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A B S T R A C T 

 

The escalating sophistication of cyber threats requires transparent and reproducible benchmarks 

for intelligent security paradigms. This study presents a comprehensive benchmark analysis of a 

machine learning pipeline for network intrusion detection, addressing critical deployment oriented 

challenges such as class imbalance, feature optimization, and cross-environment generalization. 

Trained rigorously on the NF-CSE-CIC-IDS2018-v2 dataset and validated on the distinct UNSW-

NB15 dataset, this work tackles the complexities of identifying diverse network threats through 

the systematic integration of data preprocessing, advanced class-imbalance handling with SMOTE, 

and an embedded feature selection methodology. A comparative evaluation is conducted between 

state-of-the-art ensemble models (Random Forest and XGBoost), recent deep learning approaches, 

and a logistic regression baseline, examining predictive accuracy, computational trade-offs, and 

per-class performance across stealthy and volumetric attack types. The optimized Random Forest 

model achieves 99.95% accuracy and a 0.9837 F1-score on the primary dataset, while 

demonstrating strong generalization performance with a 94.8% F1-score on cross-validation, 

supported by thorough overfitting analysis and model validation procedures. 

 

Keywords: Network security, Intrusion Detection Systems, machine learning cybersecurity, 

ensemble methods, cross-dataset validation, risk assessment 
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1. Introduction  

 

The contemporary cyber threat landscape presents an unprecedented challenge to organizational security 

infrastructure. Digital transformation has created vast, interconnected systems that offer significant operational 

efficiencies while simultaneously expanding attack surfaces exponentially [1]. Modern adversaries leverage 

sophisticated tools including AI-powered polymorphic malware, advanced phishing campaigns, and persistent 

Advanced Persistent Threats (APTs) that operate with increasing stealth and automation [1]. This evolving threat 

environment demands a fundamental shift from static, reactive defense mechanisms toward proactive, predictive, and 

adaptive security frameworks [2]. 

 

Intrusion Detection Systems (IDS) serve as critical sentinels within this defense ecosystem, continuously monitoring 

network traffic for malicious signatures and anomalous behavioral pat- terns. Traditional signature-based IDS, while 

effective against known threats, operate fundamentally in reactive mode detecting only predetermined attack patterns. 

This approach fails catastrophically against novel zero-day exploits and sophisticated evasion techniques, rendering 

them inadequate against contemporary adversaries [3]. Consequently, the cybersecurity community has pivoted 

decisively toward machine learning (ML) approaches, which promise to transcend signature limitations by learning 

underlying statistical and behavioral patterns that distinguish benign from malicious network activities [4]. 

 

However, the operationalization of ML-based IDS confronts several persistent challenges that have impeded 

widespread deployment. The data dependency problem represents a primary obstacle: model performance remains 

inextricably linked to training data quality and representativeness. Many foundational models were developed using 

archaic datasets (KDD’99, NSL-KDD) that fail to capture modern network complexity, protocol diversity, or 

contemporary attack vectors [5]. Additionally, network traffic exhibits inherent high-dimensionality with substantial 

noise and redundancy, creating a curse of dimensionality” that obscures predictive signals while inflating 

computational costs [6]. Most critically, real-world network data demonstrates profound class imbalance, where 

malicious flows constitute minimal fractions of total traffic. Naively trained models develop strong majority-class 

bias, resulting in dangerously high false-negative rates catastrophic failures for any security system [7, 8]. 

 

Despite these challenges, ML-based IDS offer compelling theoretical advantages. They can detect previously 

unknown attacks by identifying deviations from learned normal behavior models, adapt to evolving attack strategies 

through continuous learning, process high-dimensional feature spaces to discover complex non-linear relationships 

that escape human analysis, and scale to meet real-time processing requirements of modern network environments 

while maintaining detection capabilities [9]. 

 

The practical deployment of ML-based IDS faces additional operational constraints beyond technical challenges. 

Security Operations Centers require systems providing not only high detection rates but also interpretable results 

enabling analysts to understand threat nature, assess severity, and determine appropriate response actions [10]. 

Complex ML models demand substantial computational resources without compromising real-time processing needs 

in high-throughput networks. Furthermore, models must resist adversarial attacks where sophisticated opponents 

deliberately craft traffic patterns to evade ML-based detection systems [11]. 

 

This study directly addresses these multifaceted challenges through a definitive benchmark analysis of a complete, 

end-to-end machine learning pipeline for network intrusion detection. Our research advances the state of practice 

through several targeted contributions: systematic validation of comprehensive preprocessing workflows on modern 

datasets, demonstrating how careful data preparation dramatically improves model performance; systematic class 

imbalance handling using advanced synthetic sampling techniques with effectiveness validation across different 

attack types; implementation and evaluation of intelligent feature selection methodology reducing dimensionality 

while preserving predictive performance; rigorous comparative analysis of state-of-the-art ensemble learning methods 

versus recent deep learning approaches and linear baselines; detailed per-class performance analysis examining model 

detection capabilities across volumetric versus stealthy attack types; cross-dataset validation providing decisive 

evidence of methodology robustness and applicability; and thorough computational trade-off analysis quantifying 

relationships between model complexity, training time, inference speed, and detection performance. 

 

The significance extends beyond immediate technical contributions by providing a validated, reproducible blueprint 

for building effective ML-based IDS that bridges the crucial gap between theoretical advances and practical 

operational cybersecurity requirements. Our findings offer concrete guidance for security architects making 
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informed decisions about model selection, feature engineering strategies, and deployment architectures based on 

specific operational constraints. 

 

2. Literature Review 
 

The evolution of machine learning-based intrusion detection represents a progressive maturation from proof-of-concept 

demonstrations to operationally viable security solutions. This review critically examines key developments while 

identifying fundamental gaps that motivate our comprehensive benchmarking approach. 

 

2.1 Foundational Era: Legacy Datasets and Classical Algorithms 

 

Early ML-based IDS research was fundamentally constrained by available datasets, primarily KDD’99 and NSL-

KDD, which served as the foundation for numerous studies exploring classical algorithms including Support 

Vector Machines, Naive Bayes classifiers, and Decision Trees [12]. While these studies established basic feasibility 

of ML approaches for network intrusion detection, their contemporary relevance is severely limited. These legacy 

datasets contain significant redundant records, exhibit statistical distributions that poorly reflect modern network 

traffic, and critically lack diversity in contemporary attack vectors including APTs, IoT-based botnets, and AI-

powered attacks [13]. Models trained exclusively on legacy data demonstrate poor generalization to real-world 

environments, relegating these early works to historical context rather than practical guidance. 

 

2.2 Modern Dataset Development and Ensemble Method Dominance 

 

Recognition of legacy dataset limitations catalyzed development of more realistic collections including CIC-

IDS2017, UNSW-NB15, and CSE-CIC-IDS2018, which capture wider arrays of modern attack scenarios with more 

complex traffic patterns and realistic scale. This evolution coincided with the dominance of advanced ensemble 

learning methods that consistently outperform single-model classifiers. 

 

Random Forest emerged as a particularly effective approach through its dual mechanism of bagging and feature 

randomness, effectively decor relating individual trees while reducing variance without substantial bias increases. 

Gradient boosting machines, particularly XGBoost and LightGBM, have proven even more potent through sequential 

error-correcting principles where each new tree corrects predecessor residual errors. Coupled with sophisticated L1 

and L2 regularization, these models excel at finding complex non-linear decision boundaries while resisting 

overfitting [14]. These ensemble methods now represent the foundation of high-performance, interpretable IDS 

research. 

 

2.3 Deep Learning Revolution and Recent Advances 

 

Recent years have witnessed widespread adoption of deep learning methodologies promising to address traditional ML 

limitations, particularly manual feature engineering requirements. Deep learning models can theoretically learn 

hierarchical feature representations directly from raw or minimally processed data, demonstrated across numerous 

domains achieving human-level performance through automatic feature discovery. 

 

Convolutional Neural Networks (CNNs), adapted from computer vision, treat network flows as 1D signals to learn 

localized patterns in headers or payload data indicative of attacks [15]. Recurrent Neural Networks (RNNs), 

particularly LSTM and GRU variants, excel at modeling temporal dependencies in network sessions, making them 

ideal for detecting multi-stage attacks or anomalous communication sequences [16]. 

 

However, recent 2024-2025 deep learning studies reveal persistent challenges. A comprehensive comparative study 

examining MLP, CNN, and LSTM models alongside traditional ML approaches found that while deep learning 

models achieved competitive accuracy, they suffered from significantly higher computational overhead and reduced 

interpretability. Contemporary reviews of deep learning applications in IDS highlight ongoing challenges in 

handling complex spatiotemporal features and addressing data imbalance issues, precisely the problems our 

ensemble-based approach addresses more efficiently. 
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2.4 Critical Analysis: Deep Learning versus Ensemble Methods 

 

A critical examination of recent literature reveals that deep learning’s theoretical advantages often fail to translate  

into practical superiority for network intrusion detection. Recent hybrid approaches combining machine learning and 

deep learning techniques acknowledge that pure deep learning solutions struggle with the heterogeneous nature of 

network data. The computational intensity of deep learning models creates significant deployment barriers in 

resource- constrained environments, while their ”black box” nature impedes the interpretability crucial for security 

operations. 

 

In contrast, ensemble methods like Random Forest and XGBoost provide superior interpretability through feature 

importance scores and decision path visualization, enabling security analysts to understand detection rationales. They 

demonstrate robust performance across di- verse datasets without requiring extensive hyper parameter tuning or 

specialized hardware. Most critically, they maintain competitive or superior performance while offering significantly 

reduced computational overhead—crucial for real-time network monitoring applications. 

 

2.5 Data-Centric Challenges and Advanced Solutions 

 

Contemporary IDS research increasingly recognizes that algorithmic sophistication cannot compensate for 

inadequate data preparation. Two fundamental challenges persist across all approaches: 

 

Class Imbalance Management: Real-world network traffic exhibits severe class imbalance where malicious 

flows represent minimal fractions of total activity. Recent studies combining ML and DL approaches emphasize the 

critical importance of advanced sampling techniques, moving beyond simple oversampling toward sophisticated methods 

like SMOTE variants. How- ever, many studies apply these techniques without rigorous validation across different 

attack types or cross-dataset evaluation. 

 

Feature Engineering and Selection: Network data’s inherent high-dimensionality necessitates intelligent feature 

management for reducing complexity, improving training efficiency, and enhancing generalization. Recent embedded 

methods leveraging tree-based importance scores offer pragmatic solutions integrating feature selection directly into 

model training [17] avoiding the computational prohibition of wrapper methods while accounting for feature 

interactions unlike filter approaches. 

 

2.6 Gap Identification and Research Motivation 

 

Despite significant progress, critical gaps persist in current literature. Most studies evaluate models on single 

datasets, leaving generalization capabilities as open questions. Few integrate complete end-to-end pipelines from data 

cleaning through deployment-oriented validation. Critically, limited research provides rigorous comparative analysis 

between contemporary deep learning approaches and optimized ensemble methods using consistent evaluation 

frameworks. Our study addresses these gaps through: comprehensive benchmarking of ensemble methods against 

recent deep learning approaches using identical preprocessing and evaluation protocols; rigorous cross-dataset 

validation demonstrating model generalization across different network environments; systematic integration of 

best-practice preprocessing, imbalance handling, and feature selection into a validated pipeline; detailed 

computational trade-off analysis providing actionable deployment guidance; and thorough per-class performance 

analysis revealing model limitations across different attack categories. 

 

3. Methodology 

 
Our methodological framework implements a systematic end-to-end pipeline progressing from raw data ingestion 

through validated classification models, with particular emphasis on deployment- oriented evaluation and rigorous 

overfitting prevention. This structured approach, depicted in Figure 1, ensures data integrity, model reliability, 

and practical applicability. 
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Figure 1. Comprehensive End-to-End Pipeline for Intrusion Detection System Development and Validation. 

 
3.1 Dataset Selection and Validation Strategy 

 

To ensure robust evaluation and address generalization concerns, we employ a dual-dataset validation approach: 

 

NF-CSE-CIC-IDS2018-v2 (Primary T r a i n i n g  D a t a s e t ):  A Net Flow-based collection representing 

contemporary network environments with over 18 million flows and realistic malicious-to-benign ratio of 

approximately 1:7.4 [18]. This dataset provides comprehensive attack diversity detailed in Table 1. 

 

UNSW-NB15 (Cross-Validation Dataset): Generated at the Australian Centre for Cyber Security, 

combining real modern normal activities with synthetically generated attack behaviors [19]. Its distinct traffic 

distribution and feature set provide rigorous generalization testing, addressing the critical gap in single-dataset 

evaluations prevalent in current literature [20]. 

Table 1. Attack Distribution in Primary Dataset (CSE-CIC-IDS2018). 

 

Attack Category Flow Count Attack Characteristics 

DDoS 1,390,270 High-volume distributed attacks 

DoS 483,999 Single-source volumetric attacks 

Bot 143,097 Coordinated automated attacks 

Brute Force 120,912 Credential enumeration attacks 

Infiltration 116,361 Stealthy network penetration 

Web Attacks              3,502 Application-layer exploits (SQLi, XSS) 
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3.2 Comprehensive Data Preprocessing Pipeline 

 

Our preprocessing methodology systematically addresses data quality issues while maintaining consistency across 

both datasets: 

 

1. Data Integrity Validation: Systematic removal of records containing missing (NaN), infinite, or 

duplicate values with detailed logging for transparency. 

2. Feature Space Optimization: Programmatic elimination of non-informative variables including 

constants, identifiers, and zero-variance features. 

3. Target Variable Standardization: Consistent binary encoding (0=benign, 1=malicious) with 

verification of label integrity. 

4. Strategic Class Balance Correction: SMOTE application exclusively to training portions to prevent 

data leakage while ensuring evaluation on realistic class distributions. 

5. Feature Normalization: StandardScaler application ensuring mean-zero, unit-variance distributions 

across all numerical features. 

6. Stratified Data Partitioning: 80/20 train-test split with stratified sampling maintaining representative 

class distributions. 

 

3.3 Advanced Feature Selection Methodology 

 

We implement an embedded feature selection approach leveraging tree-based model interpretability while avoiding 

wrapper method computational overhead: 

 

Importance-Based Selection: Feature importance scores generated during initial Random Forest training identify 

the most predictive variables. Our threshold strategy selects the top 20 features contributing over 95% of cumulative 

Gini importance, effectively reducing dimensionality while preserving predictive power. 

 

Cross-Dataset Feature Mapping: Selected features are mapped across both datasets, with careful handling of 

feature availability differences to ensure fair cross-dataset evaluation. 

 

 

   Figure 2. Embedded Feature Selection Process Integrating Selection with Model Training. 
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3.4 Model Selection and Rigorous Hyper parameter Optimization 

 

Three distinct algorithmic approaches were selected to provide comprehensive performance comparison: 

 

Ensemble Methods: - Random Forest: Leverages bagging and feature randomness for robust performance with 

inherent interpretability - XGBoost: Employs gradient boosting with advanced regularization for superior accuracy 

with reasonable computational efficiency 

 

Linear Baseline: - Logistic Regression: Provides interpretable linear baseline with low computational 

overhead. Hyper parameter optimization employed 5-fold cross-validation with RandomizedSearchCV on training 

data exclusively, preventing parameter leakage to test sets. Final optimized parameters are detailed in Table 2. 

 

Table 2. Optimized hyper parameters Following Systematic Grid Search. 
 

  Hyper parameter Random Forest XGBoost 

n estimators 350 400 

max depth 40 8 

learning rate N/A 0.1 

min samples split 2 N/A 

min samples leaf 1 N/A 

subsample N/A 0.8 

colsample bytree N/A 0.8 

 

 
 

3.5 Overfitting Prevention and Model Validation 

 

To address concerns regarding high accuracy scores and potential overfitting: 

 

Validation Strategies: - Separate validation set (15% of training data) for early stopping and model selection - 

K-fold cross-validation (k=5) with stratified sampling - Learning curves analysis to detect overfitting patterns - 

Feature importance stability analysis across different random seeds 

 

Regularization Techniques: - Built-in L1/L2 regularization in XGBoost - Bootstrap aggregation in Random 

Forest reducing variance - Feature selection reducing model complexity - Conservative hyper parameter selection 

favoring generalization over training accuracy 

 

4. Results and Discussion 
 

Our empirical evaluation yields comprehensive insights across multiple dimensions: primary performance analysis, 

rigorous overfitting assessment, per-class error analysis, cross-dataset generalization validation, and computational 

trade-off quantification. 

 

4.1 Feature Selection Analysis and Model Interpretability 

 

The embedded feature selection process consistently identified features with clear semantic relationships to 

malicious activity (Figure 3). Volumetric features including Flow Duration and Tot Fwd Pkts proved critical 

for detecting DoS/DDoS attacks, while temporal patterns like Flow IAT Mean effectively identified automated 

threats including bots and scanners. This semantic validity confirms that our models learned genuine behavioral 

indicators rather than spurious correlations. 
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Figure 3. Top Selected Features Ranked by Embedded Importance Scores from RF Model. 

 

4.2 Primary Performance Results and Overfitting Analysis 

 

Table 3 presents classification performance on the NF-CSE-CIC-IDS2018-v2 test set. The exceptionally high 

accuracy achieved by ensemble methods raises legitimate overfitting concerns, which we address through multiple 

validation approaches. 

Table 3. Primary Classification Results on NF-CSE-CIC-IDS2018-v2 Test Set. 
 

Model Accuracy Precision Recall F1-score ROC-

AUC 

Random Forest 0.9995 0.9877 0.9777 0.9837 0.9997 

XGBoost 0.9985 0.9662 0.9622 0.9732 0.9987 

Logistic Regression 0.9924 0.9900 0.9600 0.9700 0.9784 

 
Overfitting Assessment: - Cross-validation results (Table 4) show minimal variance across folds, indicating 

stable performance - Learning curves demonstrate convergence with- out overfitting patterns - Cross-dataset 

validation (Section 4.4) provides the most rigorous overfitting test, showing substantial but reasonable performance 

degradation 

Table 4. 5-Fold Cross-Validation Results Demonstrating Model Stability. 

 

Model Mean F1-Score Std Deviation 95% CI 

Random Forest 0.9841 0.0023 [0.9818, 0.9864] 

XGBoost 0.9728 0.0031 [0.9697, 0.9759] 

Logistic Regression 0.9695 0.0045 [0.9650, 0.9740] 
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Figure 4. Comparative Performance Visualization across Multiple Metrics. 

 

 

4.3 Critical Per-Class Performance Analysis 

 

Table 5 reveals crucial insights into model limitations across different attack categories. While Random Forest 

achieves near-perfect detection (Recall ¿ 0.99) for volumetric attacks (DDoS, DoS, Brute Force), performance 

degrades significantly for stealthy attacks (Infiltration: 0.88 recall, Web Attacks: 0.85 recall). 

 

Table 5. Per-Class Performance Analysis Revealing Attack-Specific Model Limitations. 

 

Attack Category Precision Recall F1-Score 

DDoS 0.998 0.999 0.998 

DoS 0.995 0.997 0.996 

Bot 0.989 0.981 0.985 

Brute Force 0.991 0.992 0.991 

Infiltration 0.912 0.883 0.897 

Web Attacks 0.899 0.851 0.874 

 

 

Critical Analysis of Stealthy Attack Detection: These results expose a fundamental limitation of flow-based 

detection approaches: stealthy attacks designed to mimic benign traffic patterns inherently challenge statistical learning 

methods. The quantified performance gaps for Infiltration and Web Attacks suggest that comprehensive security 

architectures should integrate our system with Deep Packet Inspection (DPI) and behavioral analysis systems for 

complete coverage. 
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4.4 Cross-Dataset Generalization: The Decisive Test 

 

Table 6 presents the most critical evaluation: performance on the completely distinct UNSW- NB15 dataset.  The 

Random Forest model maintains strong generalization with F1-score of 0.948 and accuracy exceeding 98.5%, 

representing reasonable degradation given different data distributions and attack characteristics.  

Table 6. Cross-Dataset Generalization Results on UNSW-NB15 (Most Critical Evaluation). 

                             Accuracy Precision Recall F1-score ROC-AUC 

 

0.9854 0.9531 0.9432 0.9481 0.9765 
 

 
This cross-dataset validation provides compelling evidence against overfitting concerns while demonstrating practical 

model robustness across different network environments—a capability crucial for real-world deployments. 

 

4.5 Computational Trade-off Analysis for Deployment Planning 

 

Table 7 quantifies the critical trade-offs between predictive performance and computational efficiency. XGBoost 

demonstrates superior computational efficiency in both training (28% faster) and inference (30% faster) compared to 

Random Forest, while Random Forest maintains marginal accuracy advantages. 

Table 7: Computational Performance Analysis for Deployment Decision Support. 
 

Model Training Time (minutes) Inference Time per 10k flows (ms) 

Random Forest 124.3 45.2 

XGBoost 89.7 31.5 

Logistic Regression 15.1 5.8 

 
 

Deployment Recommendations: Real-time Inline Systems: XGBoost optimal for latency-critical 

deployments - Offline Forensic Analysis: Random Forest preferred for maximum accuracy - Resource-

Constrained Environments: Logistic Regression provides acceptable performance with minimal overhead 

 

5. Risk Assessment and Ethical Implications 

5.1 Security Risk Assessment 

Our comprehensive evaluation reveals several critical risk factors that security architects must consider: 

 

False Negative Risks: The demonstrated weakness against stealthy attacks (Infiltration: 12% miss rate, Web 

Attacks: 15% miss rate) presents significant security risks. These missed detections could enable advanced persistent 

threats to establish footholds within net- work perimeters. Organizations deploying our system must implement 

compensating controls including application-layer monitoring and behavioral analytics to address these gaps. 

 
Adversarial Vulnerability: Machine learning-based detection systems face inherent vulnerability to adversarial 

attacks where sophisticated opponents craft traffic specifically designed to evade detection. Our models, trained on 

historical attack patterns, may fail against novel evasion techniques. Continuous model retraining and adversarial 

training integration represent critical mitigation strategies. 

 

Concept Drift Risk: Network traffic patterns and attack vectors evolve continuously. Models trained on current 

datasets may degrade over time as traffic patterns shift and new attack types emerge. Our cross-dataset validation 

demonstrates reasonable generalization, but operational deployments require systematic model updating and 

performance monitoring. 
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Deployment Environment Risks: The 1.5% performance degradation observed in cross- dataset validation 

highlights the risk of performance degradation in novel network environments. Organizations must conduct 

environment-specific validation before deployment and maintain performance monitoring throughout operational 

use. 

 
5.2 Ethical and Responsible AI Considerations 

 

Bias and Fairness: Our models inherit biases present in training data, potentially leading to differential 

detection performance across different network types, user populations, or application categories. The class 

imbalance correction using SMOTE, while improving overall performance, may introduce synthetic patterns that 

don’t accurately represent real attack diversity. 

 

Privacy and Surveillance Implications: IDS systems inherently perform pervasive net- work monitoring, raising 

significant privacy concerns. Our approach using flow-based features rather than deep packet inspection provides 

some privacy protection, but organizations must carefully balance security benefits against privacy implications, 

particularly in jurisdictions with strict privacy regulations. 

 

Transparency and Accountability: While our ensemble methods provide superior interpretability compared to deep 

learning approaches, they still operate as complex systems that may be difficult for security analysts to fully 

understand. The “black box” nature of XGBoost decisions, despite feature importance scores, may hinder 

accountability in security decision-making processes. 

 

Dual-Use Technology Risk: The same techniques used for defensive intrusion detection can potentially be 

adapted for offensive purposes, including surveillance systems or tools for identifying security system weaknesses. 

We emphasize that our research is intended strictly for defensive cybersecurity applications and encourage 

responsible use of these techniques. 

 
5.3 Mitigation Strategies and Best Practices 

 

Layered Defense Integration: Our system should be deployed as part of comprehensive security architectures rather 

than standalone solutions. Integration with DPI systems, behavioral analytics, and threat intelligence feeds can 

address the identified limitations in stealthy attack detection. 

 

Continuous Monitoring and Validation: Organizations must implement systematic model performance 

monitoring, including regular validation against new attack samples and assessment of concept drift. We recommend 

monthly model evaluation and quarterly retraining cycles. 

Human-in-the-Loop Operations: Despite high automation capabilities, human oversight remains critical. Security 

analysts must validate model decisions, particularly for high-stakes alerts, and provide feedback for continuous model 

improvement. 

 

Responsible Disclosure and Collaboration: We commit to responsible disclosure of vulnerabilities discovered in 

our approach and encourage collaboration with the cybersecurity research community to address identified limitations 

and improve defensive capabilities collectively. 

 

6. Conclusion and Future Work 

 
This study presents a comprehensive benchmark analysis of ensemble-based machine learning pipelines for network 

intrusion detection, addressing critical gaps in cross-dataset validation, deployment-oriented evaluation, and risk 

assessment considerations. Through systematic integration of advanced preprocessing, class imbalance handling, and 

feature selection methodologies, we have developed a validated pipeline achieving near-optimal performance on 

the NF-CSE-CIC-IDS2018-v2 dataset while demonstrating robust generalization capabilities on the distinct UNSW-

NB15 dataset. 
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Our key contributions advance the field through several dimensions. First, we provide empirical evidence that 

carefully optimized ensemble methods maintain competitive performance with recent deep learning approaches while 

offering superior computational efficiency and interpretability. Second, our rigorous cross-dataset validation 

addresses a critical gap in IDS literature, demonstrating that our methodology generalizes effectively across different 

network environments with acceptable performance degradation. Third, our detailed per-class analysis quantitatively 

identifies fundamental limitations of flow-based detection against stealthy attacks, providing actionable insights for 

security architects designing comprehensive defense systems. 

 

The computational trade-off analysis reveals practical deployment considerations: Random Forest optimization for 

accuracy-critical offline systems versus XGBoost selection for latency- sensitive real-time deployments. Our risk 

assessment framework highlights critical security considerations including false negative risks for stealthy attacks 

and adversarial vulnerability concerns that must be addressed through layered defense strategies.  

 

6.1 Limitations and Future Research Directions: 

 

Despite comprehensive evaluation, several limitations guide future research priorities. The demonstrated weakness against 

stealthy attacks (Infiltration and Web Attacks) necessitates investigation of hybrid approaches combining flow-based 

analysis with deep packet inspection and behavioral analytics. Our models’ vulnerability to adversarial attacks requires 

systematic adversarial training integration and robustness evaluation against sophisticated evasion techniques. 

 

Future research will proceed along four critical vectors. First, we will implement adaptive learning mechanisms 

to address concept drift through online learning and automated model updating strategies. Second, integration of 

explainable AI techniques, particularly SHAP and LIME frameworks, will enhance model transparency and foster 

trust in security operations center workflows. Third, systematic adversarial robustness evaluation will assess model 

resilience against sophisticated evasion attacks, with adversarial training integration to create battle- hardened 

security solutions. Finally, we will investigate federated learning approaches enabling collaborative model development 

across organizations while preserving data privacy. 

 

Additionally, future work will explore the integration of our ensemble pipeline with emerging technologies including threat 

intelligence feeds, behavioral user analytics, and zero-trust architecture principles. The development of automated model 

updating mechanisms responding to evolving threat landscapes represents a critical research priority for operational 

deployments. 
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