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A B S T R A C T 

 

Port scan attacks are commonly employed by malicious actors or automated tools to probe a system’s 

network ports in search of open ports and potential vulnerabilities. These ports function as 

communication endpoints that allow services and applications to exchange data. While port scanning is 

often associated with malicious intent—such as mapping network structures, identifying running 

services, or preparing for subsequent attacks—it is not always harmful. In fact, cybersecurity 

professionals and system administrators regularly use port scanning as a diagnostic tool to identify and 

address system weaknesses. To protect against port scan attacks, organizations typically deploy a 

combination of firewalls, intrusion detection systems (IDS), and network monitoring tools to detect and 

block unauthorized scanning activities. Detecting port scans is a vital part of cybersecurity defense, 

enabling organizations to identify points of vulnerability, respond swiftly to incidents, and implement 

appropriate security measures. This proactive approach significantly reduces the risk of successful 

cyber intrusions. In our research, we propose a machine learning-based approach for detecting port scan 

attacks. The process begins with data collection, where network traffic data containing behavioral 

indicators of scanning activity is gathered. From this data, relevant features are extracted to train the 

model. Feature selection is then performed using metaheuristic algorithms such as Ant Colony 

Optimization (ACO), Genetic Algorithm (GA), and Gray Wolf Optimization (GWO), which help 

reduce computational complexity by selecting the most informative features. These selected features 

are then used to train machine learning models, including classifiers like Support Vector Machine 

(SVM) and K-Nearest Neighbors (KNN), to differentiate between benign and malicious activity. 

Finally, the performance of the trained models is assessed using evaluation metrics such as precision, 

recall, F1-score, and accuracy. The results of our experiments indicate that the proposed models are 

highly effective, achieving accuracy rates exceeding 99% across all tested configurations. In summary, 

port scan detection is essential for strengthening network defenses. By leveraging machine learning 

techniques and optimization-based feature selection, it is possible to detect and respond to port scanning 

behaviors with greater accuracy and efficiency. 

 

Keywords: Internet of Things (IoT), Authentication, Blockchain, Security of IoT networks, 

Homomorphic Encryption Privacy. 
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1. Introduction  

Port scan attacks are techniques used to probe computer systems or networks in order to identify open ports and associated 

services. By sending a series of data packets to various ports, malicious actors attempt to determine the status of each port 

and uncover potential system vulnerabilities [1]. These scans can take multiple forms, including TCP port scanning, UDP 

port scanning, covert scanning, and SYN flood attacks, all of which aim to gather intelligence that could be used for 

unauthorized access or more sophisticated future exploits [5]. The early detection and prevention of port scan attacks are 

essential components of robust network security strategies. Tools such as intrusion detection systems (IDS), firewalls, and 

continuous network monitoring play a pivotal role in identifying and halting suspicious activities before they escalate [4]. 

Timely detection of port scans contributes to proactive threat mitigation, allowing organizations to address vulnerabilities 

before they can be exploited [2]. This proactive stance not only limits potential damage but also enhances compliance with 

cybersecurity regulations, improves overall network efficiency, and supports a culture of security awareness and 

preparedness [3]. 

 

Port scanning, however, is not inherently malicious and can serve legitimate purposes. It is commonly used by cybersecurity 

professionals for reconnaissance, vulnerability assessment, security auditing, penetration testing, network mapping, and 

research [16]. Such scans help security teams evaluate existing protections, simulate potential threats, and improve 

defensive measures. Nonetheless, conducting port scans without proper authorization is considered both illegal and 

unethical, as it infringes on privacy and system integrity [17]. Therefore, while port scanning remains a critical tool in the 

cybersecurity arsenal, it must be employed responsibly and within legal boundaries to ensure it supports, rather than 

threatens, digital security. 

 

The primary goals of identifying port scan attacks using feature selection and machine learning techniques are to accurately 

detect threats, categorize network activities, optimize resource usage, adapt to evolving attack strategies, enable real-time 

detection, reduce false positives, and ensure scalability [7]. Feature selection algorithms, when integrated with machine 

learning models, significantly enhance the accuracy and efficiency of port scan detection. This advancement allows 

organizations to respond more swiftly and effectively, minimizing the risk of security breaches [6]. However, detecting 

port scan attacks poses several challenges. Adversaries often use evasive tactics, such as encrypted traffic or obfuscation, 

to avoid detection, resulting in increased occurrences of false positives or false negatives [9]. The complexity and dynamism 

of modern networks further complicate the differentiation between benign and malicious activities, and the continuous 

evolution of attack vectors necessitates constant updates to detection methods. Additionally, deep inspection of traffic can 

impact system performance, while privacy concerns must also be considered. In the absence of granular data, the accuracy 

of detection mechanisms may be compromised [10]. Zero-day attacks and system overloads present further obstacles, 

potentially delaying detection or causing it to fail altogether. Despite these limitations, techniques such as behavioral 

analysis and continuous network monitoring can strengthen detection capabilities and overall system security [12] [14]. 

 

The impetus for detecting port scan activity is rooted in the critical need to preserve network security and defend IT 

infrastructure from unauthorized access [13]. Port scan detection helps identify threats, reveal vulnerabilities, and enable 

corrective actions to be taken. It also supports compliance with cybersecurity regulations, improves operational efficiency, 

and enhances incident response and forensic investigations, thereby increasing organizational awareness and resilience [4] 

[15]. Machine learning and deep learning approaches to port scan detection typically involve feature selection and model 

training to classify network traffic as either normal or indicative of a scan. These approaches include supervised learning 

using labeled data, unsupervised learning for anomaly detection, neural networks such as convolutional neural networks 

(CNNs) and recurrent neural networks (RNNs), ensemble methods that aggregate multiple models, and online learning 

techniques for real-time detection [18]. The success of these approaches depends heavily on the quality of training data, 

the relevance of the selected features, and the suitability of the algorithms used. Continuous monitoring and periodic 

reevaluation are essential to maintain high accuracy and adaptability to emerging threats [19]. 

 

In our study, port scan detection is implemented by employing feature selection algorithms—such as Ant Colony 

Optimization (ACO), Genetic Algorithm (GA), and Gray Wolf Optimization (GWO)—alongside machine learning 

classifiers like Support Vector Machine (SVM) and k-Nearest Neighbors (KNN). The process begins with collecting raw 

network traffic data and extracting key features, including IP addresses, port numbers, and packet-level attributes. These 

features are then refined through selection algorithms to prepare the data for modeling. Subsequently, machine learning 

models are trained using SVM and KNN, and their performance is evaluated using relevant metrics. The models are 

iteratively refined to enhance their effectiveness and then deployed for real-time detection. Sustained monitoring and 

updates are vital to ensure the ongoing reliability of the system, with success hinging on high-quality training datasets, 

robust feature selection, appropriate model choice, and continuous performance assessment. 
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When applying optimization techniques such as Ant Colony Optimization (ACO), Genetic Algorithm (GA), and Grey Wolf 

Optimizer (GWO) in conjunction with machine learning (ML) methods for port scan detection, several critical research 

questions emerge. RQ1: How can ACO be leveraged to enhance feature selection in the context of port scan detection? 

RQ2: What are the specific advantages of GA in optimizing feature selection for identifying port scan attacks? RQ3: In 

what ways does GWO contribute to improving feature selection performance for port scan detection? RQ4: How can 

machine learning models be effectively integrated with these optimization algorithms to boost the accuracy and efficiency 

of detecting port scans? RQ5: What is the overall impact of this integration on performance within complex feature spaces? 

 

This research presents several key contributions. First, a comparative analysis is conducted to evaluate the performance of 

selected feature selection algorithms (ACO, GA, GWO) and machine learning classifiers (SVM, KNN) in terms of their 

accuracy, precision, and detection capabilities. This comparison identifies the most effective combinations and informs the 

selection of techniques for enhanced detection performance. Second, the study explores innovative combinations of feature 

selection methods with machine learning algorithms to uncover synergistic effects, aiming to outperform the accuracy and 

efficiency of standalone approaches. Third, it focuses on evaluation metrics specifically tailored to the nuances of port scan 

detection, such as precision, recall, F1-score, and overall accuracy, thereby enabling a nuanced performance assessment. 

Fourth, the research employs a real-world dataset derived from actual network environments containing both benign and 

port scan traffic. This ensures the relevance, credibility, and applicability of the findings, especially in dynamic network 

contexts with evolving attack patterns. Finally, the study proposes enhanced solutions—in terms of accuracy, 

computational efficiency, and adaptability providing valuable tools for network administrators and cybersecurity 

professionals to detect and respond to port scanning threats effectively. 

 

2. Literature Review  
 

Several researchers have explored the detection of port scan attacks by proposing various machine learning and artificial 

intelligence models to enhance network security. For example, the study by [11] focused on distinguishing between port 

scanning and Distributed Denial of Service (DDoS) attacks using machine learning techniques. The researchers compared 

multiple algorithms—including decision trees, k-nearest neighbors (KNN), support vector machines (SVM), and random 

forests—to evaluate their effectiveness in identifying and differentiating between these types of attacks. The study began 

by outlining the characteristics of port scans and DDoS attacks, emphasizing their potential impact on network security and 

the importance of robust detection mechanisms. A labeled dataset comprising normal traffic, port scanning activities, and 

DDoS instances was used for training and testing. Feature extraction was performed to isolate relevant attributes, and each 

algorithm was evaluated based on accuracy, precision, recall, and F1 score. In a related study, [12] proposed the use of 

artificial intelligence (AI) algorithms to detect and classify network traffic patterns associated with port scanning. The 

authors highlighted the importance of early detection in mitigating security risks and discussed their methodology, which 

involved collecting network traffic, extracting features such as source and destination ports, timing, and packet size, and 

applying AI techniques for classification. The study employed algorithms including decision trees, SVM, and neural 

networks, trained to recognize behavioral patterns indicative of port scans. Experimental results demonstrated the models' 

effectiveness based on standard performance metrics, and the authors also addressed practical concerns such as system 

scalability and adaptability to evolving attack techniques. 

 

Another work by [1] examined the use of machine learning to detect probe attacks—specific forms of network intrusions 

aimed at gathering information without exploiting vulnerabilities. Their approach leveraged classification algorithms 

trained on datasets containing both benign and probe attack traffic to distinguish between normal and malicious behavior. 

The findings underscored the capability of machine learning models to accurately identify such reconnaissance activities, 

thereby reinforcing network defenses. Similarly, [2] introduced an enhanced intrusion detection system (IDS) targeting 

probe attacks. This system integrated both signature-based and anomaly-based detection techniques, utilizing a 

comprehensive set of features derived from packet headers and traffic behavior. Machine learning was employed to improve 

classification accuracy, and the system demonstrated a high detection rate with a reduced false positive rate. The study 

concluded that the hybrid IDS model significantly improved the ability to detect and respond to probe-based threats in 

computer networks. A study [3] conducted a comparative study on two side-channel attack techniques—Flush+Reload and 

Prime+Probe—targeting the Advanced Encryption Standard (AES) cryptographic algorithm. These attacks exploit cache 

access pattern leaks to infer secret keys used during AES encryption. The study employed machine learning strategies to 

analyze collected cache access patterns and train classification models to recover cryptographic keys. Their findings 

evaluated the effectiveness of both attack methods in terms of accuracy, efficiency, and robustness. The results revealed 

critical vulnerabilities in AES implementations and demonstrated how machine learning can support the identification and 

mitigation of such side-channel threats. In another study, researchers proposed an intrusion detection system (IDS) 
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combining Particle Swarm Optimization (PSO) and Grey Wolf Optimization (GWO) with a Support Vector Machine 

(SVM) classifier [4]. This hybrid approach was designed to optimize the classifier’s parameters, improving detection 

accuracy and reducing false positives. The system was validated using a dataset comprising network traffic features, and 

results showed significant improvements in identifying various intrusion types, confirming the efficacy of the PSO-GWO 

hybrid technique in enhancing SVM-based IDS performance. A recent research [5] explored the identification and 

remediation of zero-day vulnerabilities in software systems. These vulnerabilities, being unknown to vendors, pose 

significant risks as they remain unpatched until discovered. The paper outlined challenges in data acquisition, accurate 

assessment, and rapid mitigation. It highlighted the importance of collaboration among developers, researchers, and 

cybersecurity professionals to address these vulnerabilities proactively and improve software security. 

 

A further study proposed a novel detection method for unauthorized access in wireless sensor networks (WSNs) using a 

hybrid approach of Whale Optimization Algorithm (WOA) and Artificial Bee Colony (ABC) to optimize a Convolutional 

Neural Network (CNN) [6]. This method aimed to address resource constraints in WSNs by fine-tuning CNN parameters, 

thereby improving classification accuracy. Experimental results confirmed the model's effectiveness in distinguishing 

between normal and malicious network traffic, demonstrating the advantages of integrating optimization algorithms with 

machine learning for WSN security. [7] Focused on detecting port scanning attacks using supervised machine learning 

classifiers. Their proposed technique analyzed network traffic to identify patterns indicative of scanning behavior. By 

training classifiers on labeled datasets containing benign and malicious traffic, the system effectively distinguished port 

scans, thereby offering a practical solution for early detection and mitigation of reconnaissance attacks. In another study, 

researchers evaluated an intrusion detection system for the Internet of Things (IoT) by analyzing the impact of various 

feature selection techniques on detection accuracy and computational efficiency [8]. Given the resource limitations in IoT 

environments, selecting relevant features is critical. The study found that proper feature selection not only enhanced IDS 

performance but also reduced processing overhead, emphasizing its importance in practical IoT deployments. Another 

work by [9] presented a comprehensive survey on the application of machine learning techniques for intrusion detection in 

wireless sensor networks. The paper reviewed numerous algorithms used to counter threats such as data injection, node 

compromise, and routing attacks. It also discussed inherent WSN challenges, including limited computational resources 

and the need for real-time processing. The survey provided critical insights into the suitability of various machine learning 

methods and identified potential areas for future exploration in this domain. Lastly, a study investigated the vulnerability 

of network attack detection systems based on the Random Forest algorithm to adversarial attacks [10]. These attacks aim 

to deceive machine learning models by manipulating input data. The paper examined the strategies used to subvert detection 

accuracy and assessed countermeasures to enhance system robustness. The findings illuminated existing weaknesses and 

proposed improvements for building resilient detection frameworks against such sophisticated threats. 

 

3. Methodology 
 

To detect port scan attacks using feature selection techniques and machine learning (ML) algorithms, the process involves 

several key steps. First, data collection is performed by gathering a dataset that comprises network traffic data, including 

both normal traffic instances and instances of port scan attacks. Second, feature selection is applied to identify the most 

relevant features that effectively distinguish between benign and malicious traffic. Third, feature extraction is carried out 

by retrieving selected attributes from the preprocessed dataset—such as IP addresses, port numbers, packet timing, packet 

size, and protocol type—that are critical for modeling network behavior. Fourth, appropriate machine learning algorithms 

are selected based on the problem requirements and the nature of the dataset. Fifth, model training is conducted by using 

the extracted features and labeled data to train the ML models to learn the underlying patterns associated with port scanning 

behavior. Finally, in the evaluation and validation phase, the performance of the trained models is assessed using metrics 

such as accuracy, precision, recall, F1 score, and AUC-ROC. The models are validated using separate testing datasets to 

determine their generalization ability and effectiveness in real-world scenarios. Figure 1 presents the research methodology 

steps.  

 

3.1 Data Acquisition Description 

 

In the ongoing efforts to defend against evolving network threats, Intrusion Detection Systems (IDS) and Intrusion 

Prevention Systems (IPS) serve as critical security mechanisms. However, the effectiveness of anomaly-based intrusion 

detection approaches is often limited by the lack of reliable datasets for rigorous testing and validation. A comparative 

review of eleven prominent datasets developed since 1998 indicates that many of them are now outdated, lacking in 

diversity, and fail to comprehensively cover a wide range of known attack types. Furthermore, many datasets anonymize 

payload data, reducing their utility for practical evaluation. 
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Figure 1. Research Methodology Steps. 
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In contrast, the CICIDS2017 dataset stands out as a benchmark for its realistic representation of contemporary network 

traffic and attack scenarios. It includes detailed labeled traffic flows with attributes such as timestamps, source and 

destination IP addresses, ports, protocols, and attack classifications—all organized in CSV format. A notable feature of this 

dataset is the use of the B-Profile system, which generates realistic background traffic based on human behavioral patterns. 

 

The dataset simulates the behavior of 25 users across various network protocols and incorporates a wide range of attack 

types including Brute Force (FTP and SSH), Denial of Service (DoS), Web-based attacks, infiltration attempts, and Botnet 

activity. It adheres to eleven established criteria for benchmark datasets, providing a comprehensive network setup and 

multiple traffic sources. During the attack simulations, network traffic data were collected alongside memory dumps and 

system call traces from compromised hosts. Over 80 distinct flow-based features were extracted using the CICFlowMeter 

tool. Table 1 presents several types of datasets. 

 

Table1. Datasets. 

 

Datasets Description  

 

NSL-KDD Refined  version of KDD99dataset after removal of duplicate records 

ISCX Traffic from real world physical test environment 

UNSW-NB15 55 features covering 10 types of attacks 

CICIDS2(our 

dataset) 017 

79 features with normal traffic and attacks 

 

3.2 Feature Selection 

 

Feature selection is a fundamental process in the detection of port scan attacks, as it helps isolate the most informative 

attributes that distinguish normal traffic from malicious scanning behavior. By automating the selection of relevant features, 

this process enhances model performance, reduces computational complexity, and mitigates overfitting. Several widely-

used feature selection methods include: Mutual Information (MI): Measures the dependency between each feature and the 

target variable, quantifying their information gain. Information Gain (IG): Assesses how much information a feature 

contributes to reducing uncertainty in the classification outcome. Chi-Square Test: Evaluates the statistical independence 

between categorical variables, helping identify significant relationships between features and the class label. Recursive 

Feature Elimination (RFE): Iteratively removes the least important features based on model-specific criteria until an optimal 

subset is achieved. Wrapper Methods: Utilize predictive models to evaluate subsets of features, relying on search algorithms 

to identify the best-performing combinations. L1 Regularization (Lasso): Applies penalties to feature weights to encourage 

sparsity, thereby retaining only features with non-zero coefficients. Correlation-Based Feature Selection (CFS): Selects 

features that are highly correlated with the target variable while minimizing redundancy among selected features. 

 

The choice of feature selection technique is influenced by factors such as dataset characteristics, feature dimensionality, 

and the desired balance between computational efficiency and model accuracy. In this study, we utilize three metaheuristic 

optimization algorithms for feature selection: Genetic Algorithm (GA), Ant Colony Optimization (ACO), and Grey Wolf 

Optimization (GWO). These algorithms are employed to identify the most relevant feature subsets that enhance the 

detection performance of the machine learning models. 

 
3.3 Feature Selection Algorithms 

 

3.3.1 Gray Wolf Optimization (GWO) algorithm 
 

The Gray Wolf Optimization (GWO) algorithm is a metaheuristic technique inspired by the social hierarchy and hunting 

strategies of gray wolves in nature. While GWO is traditionally employed for solving complex optimization problems, it 

has proven highly effective in feature selection tasks, such as identifying the most relevant features for detecting port scan 

attacks in network traffic. In this context, each gray wolf in the population represents a potential subset of features. The 

algorithm begins by initializing key parameters including population size and the number of iterations. Wolves are 

randomly positioned in the multidimensional feature space, each encoding a unique feature subset. Figure 2 presents the 

Gray Wolf Optimization (GWO) algorithm steps. 



                                                                                                                                                                                    

 

  

 

Journal of Cyber Security and Risk Auditing Vol.2025, No.4                                         ISSN: 3079-5354 

 

 

 

312 

 

During the hunting phase, wolves update their positions based on the behavior of the leading wolves—namely the alpha 

(best solution), beta (second-best), and delta (third-best) wolves. These leaders guide the search process by influencing the 

movement of the remaining wolves using mathematically modeled behaviors that simulate encircling prey and attacking it. 

This dynamic allows the algorithm to strike a balance between exploration (searching new areas of the feature space) and 

exploitation (refining known good solutions). At each iteration, a fitness function is used to evaluate the quality of each 

wolf's feature subset. This function measures how well the subset distinguishes between normal and malicious network 

traffic, helping to assess the effectiveness of the features in detecting port scans. 

 

As the algorithm progresses, wolves adapt their positions with respect to the alpha, beta, and delta wolves, gradually 

converging towards the most promising regions of the feature space. Once a stopping criterion is met—typically a fixed 

number of iterations or convergence—the algorithm selects the feature subset associated with the alpha wolf as the optimal 

solution. This subset is considered the most effective for classifying port scan activities. Through its adaptive behavior and 

biologically inspired optimization process, GWO effectively identifies key features, thereby improving the performance 

and accuracy of machine learning models used in port scan detection. 

 

 
 

Figure 2. Gray Wolf Optimization (GWO) algorithm [4] 

 

The parameters commonly employed in our implementation of the Gray Wolf Optimization (GWO) algorithm include 

several key elements that guide the search process. Firstly, the Population Size defines the number of wolves in the pack, 

with each wolf representing a candidate solution. A larger population increases exploration but may lead to higher 
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computational cost. Secondly, the Maximum Number of Generations specifies the total number of iterations the algorithm 

will execute, determining how many times the wolves update their positions in the search space. 

 

Thirdly, the Crossover Rate controls the probability that two wolves will exchange information during crossover operations, 

facilitating the combination of different feature subsets to produce new and potentially superior solutions. Fourthly, the 

Mutation Rate determines the likelihood that a wolf’s characteristics will undergo random alteration. This helps maintain 

diversity in the population and prevents premature convergence by introducing new possibilities into the search. 

 

Fifth, the Exploration Factor manages the trade-off between exploration (searching new areas of the solution space) and 

exploitation (refining current promising solutions). It ensures a balanced search strategy throughout the optimization 

process. Lastly, the Termination Criteria define when the algorithm should stop running. This could be upon reaching a 

predefined number of generations, achieving a target fitness level, or observing no significant improvement over a set 

number of iterations. These parameters collectively shape the behavior and effectiveness of the GWO algorithm in 

identifying optimal feature subsets for port scan detection. 

 

3.3.2 Ant Colony Optimization (ACO) 
 

Ant Colony Optimization (ACO) is a nature-inspired algorithm modeled after the foraging behavior of ants and is widely 

applied to solve complex optimization problems. In the context of port scan detection, ACO is effectively used for feature 

selection by identifying the most relevant attributes that help differentiate between normal and malicious network traffic. 

The process begins with initialization, where a population of artificial ants is created. Each ant represents a candidate 

solution, which in this case is a subset of features. A pheromone trail matrix is also established to quantify the desirability 

of each feature—these values will guide the ants in their search for optimal subsets. During the solution construction phase, 

each ant navigates the feature space step by step, selecting features probabilistically. The decision at each step is influenced 

by two main factors: the intensity of the pheromone trail (indicating historical success of that feature) and a heuristic value 

(such as the relevance or importance of the feature to the classification task). The ant continues building its feature set until 

it meets a stopping condition, such as reaching a maximum subset size or achieving a predefined evaluation threshold. 

Following this, the pheromone update process takes place. Features that contributed to better-performing solutions receive 

increased pheromone intensity, reinforcing their importance. Conversely, pheromones on less effective features may 

evaporate over time, reducing their likelihood of being chosen in future iterations. This process helps the algorithm 

converge toward optimal or near-optimal feature subsets. The iteration continues for a predefined number of cycles or until 

convergence is observed. Upon completion, the optimal feature subset is determined by evaluating the pheromone 

intensities—features with the strongest pheromone trails are considered the most significant and are selected for the final 

subset. By mimicking the collective behavior of ants and refining feature selection iteratively, ACO provides a robust 

method for enhancing the accuracy and efficiency of port scan detection systems. 

 

The parameters used in our Ant Colony Optimization (ACO) approach are designed to fine-tune the algorithm's 

performance in selecting optimal features for port scan detection. Firstly, the Number of Ants defines the size of the ant 

colony. Each ant represents a candidate solution—specifically, a subset of features—and collectively, the ants explore the 

search space for optimal solutions. Secondly, the Number of Iterations specifies how many times the algorithm will run, 

determining how often ants traverse the feature space, update pheromone trails, and refine their solutions. The Pheromone 

Decay Rate is another crucial parameter, controlling the rate at which pheromone trails evaporate over time. This helps 

avoid convergence to local optima by encouraging exploration of alternative feature subsets. Next, the Pheromone Intensity 

dictates the amount of pheromone deposited by ants on the selected features, affecting how attractive those features will be 

to subsequent ants. A higher intensity increases the likelihood of those features being selected again. The Alpha (α) 

parameter governs the importance of pheromone trails in the decision-making process. A higher alpha value gives greater 

weight to previously successful feature paths, encouraging exploitation. In contrast, the Beta (β) parameter controls the 

influence of heuristic information—such as feature relevance or discriminative power—on the ants’ choices. Higher beta 

values increase the impact of these heuristic values, supporting more informed exploration. Finally, the Exploration Factor 

balances the ants’ behavior between exploration (seeking new paths) and exploitation (reinforcing known good paths). This 

factor ensures that the algorithm doesn't get stuck prematurely and continues to search broadly before converging on the 

best feature subset. These parameters collectively shape the behavior and effectiveness of the ACO algorithm in selecting 

meaningful features for robust port scan detection. 

In this study as shown in Table 2, the Ant Colony Optimization (ACO) algorithm utilizes a defined set of parameters to 

guide the feature selection process effectively. The number of ants is varied between 10 and 100, allowing flexibility in the 

size of the ant colony and enabling broader or narrower exploration of the feature space. The number of iterations is set 
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within the range of 100 to 1000, determining how many cycles the ants will perform in constructing solutions and updating 

pheromone trails. The pheromone decay rate ranges from 0.1 to 0.9, influencing the rate at which pheromone trails 

evaporate and thereby controlling the balance between exploration and exploitation. Pheromone intensity, which governs 

the amount of pheromone deposited on selected features, is dynamically adjusted based on solution quality, and does not 

have a fixed range. The alpha (α) parameter, which determines the influence of pheromone concentration on feature 

selection, is assigned a value between 1 and 5. Similarly, the beta (β) parameter, representing the weight of heuristic 

information in the decision process, also ranges from 1 to 5. Lastly, the exploration factor varies between 0.1 and 0.9, 

facilitating a dynamic trade-off between exploration of new feature subsets and exploitation of previously successful 

solutions. Figure 3 presents the Ant Colony Optimization algorithm steps. 

 

 

Table 2. Parameters Setting of Ant Colony Optimization (ACO) 

 

Parameter Default Value Range 

Number of Ants 10-100 

Number of Iterations 100-1000 

Pheromone Decay Rate 0.1-0.9 

Pheromone Intensity - 

Alpha 1-5 

Beta 1-5 

Exploration Factor 0.1-0.9 

 

 

 
 

Figure 3. Ant Colony Optimization algorithm [5] 

 

 

3.3.3 Genetic Algorithm (GA) 
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Genetic Algorithms (GAs) are widely used for feature selection in port scan detection due to their ability to explore complex 

search spaces through evolutionary principles. The process begins with the initialization phase, where a population of 

feature subsets is randomly generated. Each subset is then evaluated through a fitness function, which measures its ability 

to distinguish between normal network traffic and port scanning activities. The selection phase follows, where the most 

promising feature subsets are chosen for reproduction based on their fitness scores—emulating the biological concept of 

“survival of the fittest.” During reproduction, two key genetic operators are applied: crossover and mutation. Crossover 

combines features from parent subsets to generate new offspring, introducing variation and diversity, while mutation 

introduces small random changes to features within a subset to prevent premature convergence and maintain genetic 

diversity. After new subsets (offspring) are generated, their fitness is re-evaluated. A replacement strategy is then employed 

to update the population, where some existing subsets are replaced by the fitter offspring, ensuring continual improvement 

of the solution pool. This evolutionary cycle—comprising selection, crossover, mutation, and replacement—continues for 

a predefined number of generations or until a termination condition is met (e.g., convergence or reaching a satisfactory 

performance threshold). Ultimately, the feature subset with the highest fitness score is selected as the optimal solution for 

port scan detection. In summary, GAs iteratively refine the search space by evolving populations of candidate solutions, 

enabling efficient identification of highly relevant features that enhance the accuracy and robustness of machine learning 

models in detecting port scanning attacks. Figure 3 presents the Genetic Algorithm steps. 

 

 
 

Figure 4. Genetic Algorithm [6] 

 

 

 

 

The Genetic Algorithm (GA) used in this study is governed by several key parameters as presented in Table 3. The 

population size is typically set within the range of 100 to 200, which determines the number of potential feature subsets 

evaluated in each generation. The maximum number of generations is defined between 100 and 1000, controlling the total 
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number of evolutionary cycles the algorithm undergoes. The crossover rate, which influences how frequently subsets 

exchange features during reproduction, generally falls between 0.6 and 0.9. This promotes genetic diversity while ensuring 

promising traits are inherited. The mutation rate, responsible for introducing random variations into the feature subsets, is 

maintained between 0.01 and 0.05 to avoid premature convergence while maintaining solution diversity. The selection 

mechanism is employed to prioritize the survival and reproduction of the fittest individuals, although it’s specific method 

(e.g., roulette wheel, tournament) may vary depending on implementation. Elitism is set to 1, ensuring that the best-

performing individual is always retained in the next generation. Finally, the termination criteria guide when the algorithm 

should stop, typically defined by either reaching a maximum number of generations or achieving a convergence threshold 

in fitness improvement. 

 

Table 2. Parameters Setting of Genetic Algorithm (GA) 

 

Parameter Default Value Range 

Population Size 100-200 

Maximum Generations 100-1000 

Crossover Rate 0.6-0.9 

Mutation Rate 0.01-0.05 

Selection Mechanism - 

Elitism 1 

Termination Criteria - 

 

 

3.4 Features Classification Using Machine Learning Algorithms 

 

3.4.1 SVM and KNN 

 

Support Vector Machines (SVM) and k-Nearest Neighbors (KNN) are widely used machine learning algorithms for 

detecting port scan attacks. SVM is a powerful classification technique that constructs a hyperplane in a high-dimensional 

feature space to separate different classes—in this case, distinguishing between normal network traffic and port scanning 

behavior. By training on labeled datasets that indicate whether a traffic instance is benign or malicious, the SVM learns to 

identify patterns associated with port scanning and can accurately classify new instances accordingly. 

 

On the other hand, KNN is a simple yet effective algorithm for both classification and regression tasks. For port scan 

detection, KNN classifies network traffic by comparing it with known labeled instances in the training set. When a new 

data point is encountered, the algorithm computes the distances between that point and its k nearest neighbors in the feature 

space. The data point is then assigned a class based on the majority vote of these neighbors—whether they indicate normal 

traffic or a scanning attempt. 

 

Each algorithm offers distinct advantages: SVM is particularly effective in high-dimensional spaces and excels at modeling 

complex decision boundaries, making it suitable for more intricate classification tasks. KNN, in contrast, is easier to 

implement and performs well in scenarios with nonlinear boundaries and moderate feature dimensions. The choice between 

SVM and KNN depends on dataset characteristics, the nature of decision boundaries, and computational considerations. 

When used appropriately, both SVM and KNN contribute significantly to enhancing the accuracy and reliability of port 

scan detection systems. 

 

 

 

 

 

4. Findings and Discussion 
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Evaluation metrics are essential for assessing the performance of machine learning models, particularly in classification 

tasks. Among the most commonly used metrics are accuracy, sensitivity, specificity, precision, and the F1-score. Each of 

these metrics provides unique insights into different aspects of a model’s performance and reliability. Accuracy measures 

the overall correctness of a classifier by calculating the proportion of true predictions—both true positives (TP) and true 

negatives (TN)—out of the total number of predictions made. While accuracy is widely used due to its simplicity, it can be 

misleading when the dataset is imbalanced, as it does not differentiate between types of classification errors. Sensitivity, 

also known as recall or the true positive rate, measures the proportion of actual positive instances correctly identified by 

the model. It is calculated as the ratio of true positives to the sum of true positives and false negatives (FN). Sensitivity is 

particularly critical in security-related tasks, such as port scan detection, where missing a threat (false negative) could have 

serious consequences. Specificity, on the other hand, evaluates the model’s ability to correctly identify negative instances. 

It is computed as the ratio of true negatives to the sum of true negatives and false positives (FP). This metric is essential 

when minimizing false alarms is a priority. Precision, or positive predictive value, measures how many of the instances 

predicted as positive are actually correct. It is calculated by dividing the number of true positives by the total number of 

positive predictions (TP + FP). Precision is vital in situations where the cost of false positives is high, as it reflects the 

model’s ability to avoid over-predicting attacks. The F1-score provides a harmonic mean between precision and recall, 

offering a balanced evaluation that considers both false positives and false negatives. This score is particularly useful when 

dealing with imbalanced datasets or when both types of errors carry significant consequences. The formulas for these 

evaluation metrics are as follows: 

 

Accuracy = (TP + TN) / (TP + TN + FP + FN) 

 

Sensitivity (Recall) = TP / (TP + FN) 

 

Specificity = TN / (TN + FP) 

 

Precision = TP / (TP + FP) 

 

F1-score = 2 × (Precision × Recall) / (Precision + Recall) 

 

These metrics collectively provide a comprehensive framework for evaluating the effectiveness of machine learning models 

in detecting port scan attacks, enabling researchers and practitioners to make informed decisions based on a balance of 

detection capability and error minimization. 

 

Based on the study findings, Figure 5 illustrates that all evaluated techniques demonstrate high classification performance, 

with accuracy levels ranging from 99.7% to 99.9%. Notably, combinations such as ACO+SVM, ACO+KNN, GA+SVM, 

and GWO+SVM consistently achieve strong results across all evaluation metrics, including sensitivity, specificity, 

precision, recall, and F1-score. These combinations reflect a high degree of reliability and robustness in detecting port scan 

attacks. Although GA+KNN and GWO+KNN also exhibit competitive performance across these metrics, their scores are 

slightly lower compared to the aforementioned combinations. Overall, GWO+SVM emerges as the most effective method, 

achieving the highest values in all evaluation criteria, thereby indicating its superior capability in accurately identifying 

and classifying port scan activities. 

 

Based on Figure 6, which presents the accuracy comparison of various classification methods, the hybrid models combining 

optimization algorithms with machine learning classifiers demonstrate superior performance. Specifically, GWO+SVM 

achieves the highest accuracy at 0.999, followed closely by ACO+SVM, GA+SVM, and ACO+KNN, all reaching 0.998. 

Both GWO+KNN and GA+KNN also perform well, each attaining an accuracy of 0.997. In contrast, standalone classifiers 

such as KNN (Cubic) and Ensemble (Subspace Discriminant) exhibit notably lower performance, with accuracies of 0.690 

and 0.855, respectively. Although SVM (Fine Gaussian) performs reasonably well with 0.990, it still falls short compared 

to the optimized hybrid models. Similarly, Discriminant (Quadratic) records an accuracy of 0.970. Overall, the results 

highlight that optimization techniques like GWO, ACO, and GA, when integrated with classifiers like SVM and KNN, 

significantly improve detection accuracy. Among all the methods, GWO+SVM stands out as the most effective model for 

accurate port scan attack classification. 
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Figure 5. Evaluation techniques demonstrate high classification performance, with accuracy levels. 

 

 

 
 

Figure 6. The accuracy comparison of various classification methods. 

 

Figure 7 illustrates the evaluation results of the Ant Colony Optimization (ACO) combined with k-Nearest Neighbors 

(KNN) classifier using a confusion matrix. The following values and metrics can be derived from the matrix: True Positives 

(TP) with 47,659. The model correctly classified 47,659 instances as class 0 (likely benign traffic). True Negatives (TN) 

with 38,105. The model correctly identified 38,105 instances as class 1 (likely port scan or attack traffic). False Positives 

(FP) with 155. These are benign traffic instances that were incorrectly classified as attacks. False Negatives (FN) with 20. 

These are attack instances that were wrongly classified as benign. 
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Figure 7. Evaluation findings for ACO with KNN. 

 

The results show that very low misclassification with only 20 false positives and 155 false negatives out of a large sample. 

The results show that high Precision and Recall with demonstrates strong predictive capability, especially in detecting port 

scanning behavior. Regarding the balanced performance, the findings show that the ACO+KNN combination is both 

accurate and robust across classes, showing excellent generalization. Thus, ACO+KNN proves to be an effective approach 

for port scan attack detection, with performance nearly matching or rivaling more complex configurations like 

GWO+SVM. 

 

Accuracy =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
=

47,659 + 38,105

47,659 + 38,105 + 155 + 20
≈ 99.8% 

 Precision =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
=

47,659

47,659 + 155
≈ 99.7% 

 Recall =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
=

47,659

47,659 + 20
≈ 99.9% 

 Specificity =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
=

38,105

38,105 + 155
≈ 99.6% 

F1 = 2 ⋅
 Precision ⋅  Recall 

 Precision +  Recall 
≈ 99.8% 

 

 

 

These results in Figure 8 confirm that the ACO + SVM model delivers highly effective port scan detection with minimal 

misclassification. The evaluation of the ACO + SVM classifier demonstrates outstanding performance in detecting port 

scan attacks. With an accuracy of approximately 99.8%, the model shows exceptional overall predictive capability in 

distinguishing between benign and malicious network traffic. The precision score of 99.7% reflects the model’s ability to 

minimize false positives—meaning that when the model predicts a port scan, it is almost always correct. This is particularly 

important in cybersecurity scenarios, where false alarms can cause unnecessary investigation and strain resources. The 

recall (or sensitivity) value of 99.9% indicates that the model successfully detects nearly all actual port scanning attempts, 
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which is crucial in preventing breaches and ensuring proactive threat mitigation. A high recall means that the model rarely 

misses malicious activities. Additionally, the specificity score of 99.7% shows that the model also performs well in 

identifying benign traffic, avoiding false alerts that could disrupt normal network operations. This balance between 

detecting threats and avoiding false alarms ensures reliable system performance. The F1-score, which balances precision 

and recall, reaches 99.8%, confirming the model’s robustness and balanced classification capability across both attack and 

normal classes. These results validate the effectiveness of using ACO for feature selection in conjunction with SVM for 

classification. The optimization process efficiently identifies the most informative features, which contributes to the high 

detection accuracy. The model's ability to maintain such performance under real-world data conditions highlights its 

potential for deployment in live cybersecurity environments. 

 

 

Accuracy =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
=

47645 + 38127

47645 + 38127 + 133 + 34
≈ 99.8% 

 Recall =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
=

47645

47645 + 34
≈ 99.9% 

 Specificity =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
=

38127

38127 + 133
≈ 99.7% 

𝐹1 = 2 ×
 Precision ×  Recall 

 Precision +  Recall 
= 2 ×

0.997 × 0.999

0.997 + 0.999
≈ 99.8% 

 

 
 

Figure 8. Evaluation results for ACO with SVM. 

 

The findings of the confusion matrix in Figure 9 and the derived evaluation metrics clearly show that the GA+KNN 

combination achieves excellent performance across all key indicators. Both precision and recall are at 99.9%, meaning the 

model is exceptionally effective at detecting port scanning attacks while minimizing false alarms. With only 48 false 

positives and 38 false negatives out of nearly 86,000 samples, the classifier maintains a highly balanced accuracy and 

robustness, making it reliable in real-world applications. This highlights that the Genetic Algorithm for feature selection 

successfully identifies optimal features, and when paired with KNN, ensures high generalizability and effectiveness. 

 

 

 Accuracy =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
=

47,641 + 38,212

47,641 + 38,212 + 48 + 38
=
85,853

85,939
≈ 99.9% 
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 Precision =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
=

47,641

47,641 + 48
=
47,641

47,689
≈ 99.9% 

 Recall =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
=

47,641

47,641 + 38
=
47,641

47,679
≈ 99.9% 

 Specificity =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
=

38,212

38,212 + 48
=
38,212

38,260
≈ 99.9% 

 F1-score = 2 ×
 Precision ×  Recall 

 Precision +  Recall 
= 2 ×

0.999 × 0.999

0.999 + 0.999
≈ 99.9% 

 

 
 

 

Figure 9. Evaluation results for GA with KNN. 

 

 

In Figure 10, the evaluation of the GA + SVM model reveals highly effective performance in detecting port scan attacks. 

With an overall accuracy of approximately 99.8%, the model demonstrates its ability to correctly classify the vast majority 

of network traffic instances. The precision of 99.7% indicates that nearly all instances labeled as port scans by the classifier 

were indeed true attacks, highlighting the model’s low false-positive rate. This is essential in cybersecurity applications 

where too many false alarms can overwhelm security teams and obscure real threats. The recall (sensitivity) of 99.9% 

suggests that almost all actual port scanning events were successfully detected. This high recall rate is critical for ensuring 

that potential threats do not go unnoticed, thereby reducing the risk of network breaches. Additionally, the specificity of 

99.6% illustrates the model’s strong capability to correctly identify normal (benign) traffic, further confirming its 

robustness in differentiating between attack and non-attack behaviors. The F1-score, which harmonizes precision and 

recall, is also 99.8%, reflecting a balanced and consistent performance across both key dimensions of detection accuracy. 

In summary, the GA + SVM combination effectively leverages the optimization strengths of Genetic Algorithms in feature 

selection and the powerful classification capability of SVM. The result is a reliable, precise, and sensitive model suitable 

for real-time port scan detection in high-throughput network environments. This configuration stands out as one of the most 

optimal solutions among the tested combinations. 

 

 

 

 Accuracy =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
=

47635 + 38109

47635 + 38109 + 151 + 44
=
85744

85939
≈ 𝟗𝟗. 𝟖% 
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 Precision =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
=

47635

47635 + 151
=
47635

47786
≈ 𝟗𝟗. 𝟕% 

 Recall =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
=

47635

47635 + 44
=
47635

47679
≈ 𝟗𝟗. 𝟗% 

 Specificity =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
=

38109

38109 + 151
=
38109

38260
≈ 𝟗𝟗. 𝟔% 

𝐹1 = 2 ×
 Precision ×  Recall 

 Precision +  Recall 
= 2 ×

0.997 × 0.999

0.997 + 0.999
≈ 𝟗𝟗. 𝟖% 

 

 
 

 

Figure 10. Evaluation results for GA with SVM. 

The evaluation of the results of the GWO + KNN model shows that the method maintains high effectiveness in classifying 

port scan traffic, although it falls slightly short compared to some other hybrid approaches. From the confusion matrix, the 

model achieves an overall accuracy of approximately 99.7%, which indicates a strong performance across both benign and 

malicious network traffic. The precision for detecting attacks is 99.7%, meaning that the model correctly identifies most of 

the predicted attack instances, with only a few false positives. The recall (sensitivity) is also 99.7%, suggesting that the 

model successfully detects the majority of true attack instances, though with a small number of missed detections (false 

negatives). The specificity, likewise at 99.6%, shows that the classifier can correctly identify most benign traffic, helping 

to prevent unnecessary alerts from normal activity. The F1-score, combining both precision and recall, is 99.7%, indicating 

a reliable and balanced classification performance. This high F1-score confirms that GWO + KNN maintains good accuracy 

even in complex decision boundaries. However, compared to other combinations like GWO + SVM or GA + SVM, the 

performance is slightly lower—most notably in the number of misclassified benign and attack instances (as reflected in 

higher false positives and false negatives). This suggests that while KNN performs well, it may not generalize as effectively 

as SVM in high-dimensional spaces, particularly when feature boundaries are more intricate. In conclusion, GWO + KNN 

is a strong candidate for port scan detection, particularly when simplicity and interpretability are prioritized. Still, for 

environments requiring ultra-high precision, alternatives like GWO + SVM may offer marginally better performance. 
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 Accuracy =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
=

47,576 + 38,123

47,576 + 38,123 + 137 + 103
≈
85,699

85,939
≈ 99.7% 

 Precision =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
=

47,576

47,576 + 137
=
47,576

47,713
≈ 99.7% 

 Recall =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
=

47,576

47,576 + 103
=
47,576

47,679
≈ 99.7% 

 Specificity =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
=

38,123

38,123 + 137
=
38,123

38,260
≈ 99.6% 

 F1-Score = 2 ⋅
 Precision ⋅  Recall 

 Precision +  Recall 
= 2 ⋅

0.997 ⋅ 0.997

0.997 + 0.997
≈ 99.7% 

This strong performance demonstrates the effectiveness of combining Gray Wolf Optimization for feature selection with 

the K-Nearest Neighbor algorithm for classification. However, it shows slightly higher false positives (137) and false 

negatives (103) compared to combinations using SVM, which may impact sensitive applications requiring perfect precision 

or recall. Still, GWO+KNN remains a highly reliable and computationally efficient approach for port scan detection tasks 

in cybersecurity. 

 

Figure 11. Evaluation results for GWO with KNN. 

 

 

Based on the confusion matrix for GWO + SVM shown in Figure 12, the confusion matrix reflects very low false positives 

(37) and false negatives (32), which shows excellent balance in identifying both benign and attack traffic. This model 

stands out for its robustness and is highly suitable for practical deployment in intrusion detection systems (IDS) where high 

precision and recall are critical. The GWO + SVM approach proves effective for feature optimization and high-confidence 

classification, making it the most effective technique in this evaluation set for detecting port scan attacks. 

The results obtained from the confusion matrix of the GWO + SVM combination demonstrate exceptional performance 

across all key metrics, confirming the effectiveness of this hybrid approach for port scan detection. The accuracy of 99.9% 

indicates that the model is highly capable of correctly classifying both normal and malicious network traffic. With only 32 

false negatives and 37 false positives out of nearly 86,000 total samples, the system achieves a near-perfect balance between 

sensitivity and specificity. The precision of 99.9% signifies that almost all predicted attacks are true positives, reflecting 

the model's ability to minimize false alarms, which is crucial in real-time security environments to avoid alert fatigue. The 
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recall (sensitivity) of 99.9% highlights the model’s strong detection capability, capturing nearly all actual port scan 

instances and ensuring that threats do not go unnoticed. The specificity of 99.9% shows the system’s reliability in 

identifying benign traffic, maintaining network trustworthiness by avoiding unnecessary blocks. The F1-score of 99.9% 

further consolidates the model’s balanced performance in terms of both false positives and false negatives. 

 

 Accuracy =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
=

47,647 + 38,223

47,647 + 38,223 + 37 + 32
=
85,870

85,939
≈ 99.9% 

 Precision =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
=

47,647

47,647 + 37
=
47,647

47,684
≈ 99.9% 

 Recall =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
=

47,647

47,647 + 32
=
47,647

47,679
≈ 99.9% 

 Specificity =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
=

38,223

38,223 + 37
=
38,223

38,260
≈ 99.9% 

 F1-Score = 2 ⋅
 Precision ⋅  Recall 

 Precision +  Recall 
≈ 2 ⋅

0.999 ⋅ 0.999

0.999 + 0.999
≈ 99.9% 

 

 

Figure 12. Evaluation results for GWO with SVM. 

 

6. Conclusions and Future Work 
 

Port scanning attacks are commonly employed to map network structures, identify active services, and prepare for 

subsequent exploitation. However, it is important to note that port scanning is not inherently malicious. System 

administrators and cybersecurity professionals often use port scanning as a diagnostic tool to identify and mitigate 

vulnerabilities within their networks. To defend against malicious port scanning activities, organizations typically 

implement security mechanisms such as firewalls, intrusion detection systems (IDS), and network monitoring tools, all of 

which help in identifying and preventing unauthorized scanning attempts. Detecting port scan attacks is critical for 

maintaining network security. It enables early threat identification, facilitates vulnerability assessment, supports rapid 
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incident response, and strengthens overall network defense strategies. By proactively detecting such activities, 

organizations can implement appropriate security measures, thereby reducing the likelihood of successful cyberattacks. 

 

In this study, the detection process begins with data acquisition, where network traffic data is collected. Feature extraction 

follows, where relevant attributes from the dataset are identified to prepare the data for model training. Subsequently, 

feature selection techniques such as Ant Colony Optimization (ACO), Genetic Algorithm (GA), and Gray Wolf 

Optimization (GWO) are applied to identify the most informative features and reduce data dimensionality. Once optimal 

features are selected, machine learning models are trained using classification algorithms such as Support Vector Machine 

(SVM) and k-Nearest Neighbors (KNN). The performance of these models is then evaluated using standard metrics, 

including accuracy, precision, recall, and F1 score. Experimental results indicate that the proposed models achieve high 

classification performance, with accuracy rates exceeding 99%. In conclusion, the effective detection of port scans is vital 

for enhancing network security. The integration of feature selection algorithms with machine learning techniques provides 

a robust approach for accurately identifying port scanning behaviors and mitigating associated threats. 
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