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A B S T R A C T 

 

Intrusion Detection Systems (IDS) are becoming increasingly challenged with the continuous evolution 

of modern malware that is obscured, using multiple methods to bypass detection and even being able to 

deceive the detection base solely based on signatures. The use of single-view or static detection models 

is often nonproductive because they cannot perceive the various behavioral patterns and memory-level 

patterns shown during runtime. This situation motivates the development of multi-view geometry-aware 

fusion schemes. In this study, we present GSTF, a leakage-free IDS pipeline that merges network-flow 

telemetry and memory-forensics artifacts. The process uses Gromov–Wasserstein registration to 

harmonize different feature spaces, followed by ridge regression propagation and discriminative 

augmentation, which maintain the class-conditional structure. Together with a class-weighted Random 

Forest classifier, a PCA–NCA embedding promotes separability, while a calibrated decision rule ensures 

maximum recall under the precision constraint. The newly proposed GSTF framework on the large-scale, 

dual-view BCCC-Mal-NetMem-2025 dataset attained an accuracy of 99.84%, precision of 99.84%, and 

recall of 100%. These findings illustrate that geometry-consistent multi-view fusion significantly 

enhances the robustness of IDS against very high-dimensional and real-world malware threats. 

 

Keywords: Multi-view malware detection; Gromov–Wasserstein alignment; Memory-forensics 

Analysis; Intrusion Detection System (IDS); Optimal Transport Learning.  
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1. Introduction 

 

Network and memory telemetry fusion proved to be an efficient solution to the shortcomings of single-view and signature-

based malware detectors that cannot cope with obfuscation, encrypted payloads, and fast-evolving families [1, 2]. While 

combining behavioral, dynamic, and structural signals increases the representational capacity of detectors, integrating 

heterogeneous sources such as memory dumps and network flows introduces challenges in scalable feature engineering 

and leakage-free alignment [3, 4]. Distribution shifts driven by new malware families, benign drift, and class imbalance 

further degrade models trained on historical corpora, reinforcing the need for robust alignment and DRO-style defenses 

[5,6]. In parallel, recent studies have indicated the necessity of uncertainty aware methods—ensembles, Bayesian models, 

and OOD detectors— to identify unreliable predictions and allow for rejection or escalation [5,7]. Complementary 

interpretability techniques, such as SHAP-based attributions, graph reduction, and exemplar-guided explanations, are 

instrumental in building analyst trust and operational transparency [1,8]. 

 

Dynamic-graph and transformer-based detectors have made strides; however, many studies are conducted without any 

formal robustness assurance and are dependent on raw data because of the mixing of training and validation stages [6,9]. 

Ensemble and deep+tree hybrids improve empirical accuracy but still suffer from minority-class recall and poor 

calibration [4,10], whereas graph neural defenses capture structural–temporal cues at a considerable computational cost 

[11]. These limitations collectively motivate a leakage-free, distributional robust fusion framework that (i) aligns 

heterogeneous embeddings via Wasserstein/DRO objectives, (ii) produces calibrated uncertainty estimates for safe 

abstention, and (iii) offers transparent, example-driven explanations suitable for analyst triage [1–6,8–11]. 

 

Intrusion detection systems (IDS) continue to suffer from persistent challenges and thus their practical effectiveness was 

still limited. One of the major problems is that they have very high false-positive rates, which in turn induce alert fatigue 

and raise the number of security analysts who will not be able to deal with the real threats [12]. At the same time, the false 

negatives are considered to be just as serious, since the network would be exposed to a significant security risk if a low-

frequency or stealthy intrusion were to happen, and it also would be the major reason for mistrust in the IDS 

implementation [13]. Traditional signature-based IDS are prone to zero-day and evasion attacks, because they only look 

at the known attack patterns and do not take the unseen threats into account [14,15]. This has resulted in a shift towards 

anomaly-based and machine learning-driven detection strategies that model normal behavior and detect deviations in the 

system [16,17]. Poor detection capability and the misconfiguration and calibration of the systems reduce the trust of the 

analysts to the point that they no longer regard the alerts as credible and would therefore ignore them. This is especially 

true when the alerts come from sensitive or not well-adjusted systems in the case of large-scale or distributed environments 

where the complexity of deployment worsens the usability and performance problems [12]. 

 

The main contribution of this research is the development of a geometryaware and completely leakage-free intrusion 

detection system that unifies network telemetry and memory-forensics data in a robust, reliable, and interpretable manner. 

In particular, this project will try to answer the following questions: RQ1) Is it possible to merge multi-view malware data 

without leakage between the splits? RQ2) Do the consistent alignment with the geometry improve the learning of 

representations across views? RQ3) What is the robustness of the proposed system when it is exposed to class imbalance 

and distribution shift? RQ4) Do the calibrated decision mechanisms play a role in the reliability of IDS outputs? 

The remainder of this paper is organized as follows. In Section 2, we present an exhaustive literature review that includes 

multi-view learning, optimal transport alignment, memory-forensics–driven detection, and multimodal datasets. We propose 

the GSTF framework in Section 3, which comprises leakage-free preprocessing, Gromov--Wasserstein alignment, fused 

regression mapping, discriminative augmentation, and calibrated Random Forest classification. In Section 4, empirical 

evaluations of the BCCC–Mal-NetMem–2025 dataset are presented, together with cross-validation outcomes, geometric 

distortion analysis, ablation studies, permutation baselines, and calibration diagnostics. The last part, Section 5, provides a 

summary of the paper and indicates future research areas for the GSTF, especially concerning the incorporation of new 

modalities and real-time deployment scenarios. 

2. Literature Review 

With the rising use of IoT gadgets and smart city setups, the machine learning–based intrusion detection systems (IDS) 

have been subjected to attacks from adversaries and developed attacks, thus encouraging the creation of lightweight, 
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adversarial-aware defense methods that maintain detection reliability even when running on very limited resources 

[18,19]. Recent studies on malware have emphasized multi-view learning techniques over static single-view techniques 

and the need for CNN, LSTMs, RNN, CRNN, and transformer architectures to understand behavioral patterns through 

various input sources [15,20,21]. The noticeable increase in malicious software, now over 105 million per year, indicates 

the need for adaptive intrusion-detection systems [2,5,22]. Integrating all three aspects of the network, memory, and 

behavior will make the system more powerful; however, it will have issues with feature correspondence and complexity 

in high dimensions [4]. 

 

Recent works on optimal transport and Gromov-Wasserstein alignment have mainly centered on their application to 

machine learning and cybersecurity, thus influencing research on these topics. An important study derived the Fused 

Gromov-Wasserstein (FGW) distance, which is a combination of feature and structural information [23]. This distance 

facilitates comparisons across different views or modalities, which is considered an important task in machine learning 

when it comes to the interoperability of different data types. Two-dimensional embeddings formed by the Gromov–

Wasserstein measures have been successfully applied in unsupervised word translation, which is one of the areas where 

alignment is both important and challenging [24]. Challenges remain, mainly in terms of the scalability of the 

computations and the integration of OT-based alignments into more extensive multimodal fusion frameworks. This 

situation highlights the importance of developing new methods, particularly geometry consistent fusion techniques, for 

high-dimensional malware detection systems. AIMMF-IDS, along with other multimodal fusion methods, demonstrates 

that cybersecurity progressively relies on the integration of data streams for intrusion detection [25]. Simultaneously, ML-

driven systems are still adapting to new threats and changing attack patterns [26,27]. 

 

The scalability of large-scale IoT, cloud, and 5G communication networks calls for the implementation of federated IDS 

systems. This is due to the fact that they secure collaboration within learning as well as facilitate the rapid identification 

of risk [28–30]. One of the main challenges in this area is the handling of the temporal distribution shift, which has been 

addressed by employing datasets with temporal diversity (e.g., EMBER, BODMAS) along with robust techniques such 

as transfer learning, contrastive learning, and uncertainty modeling [5,31]. The literature continues to focus on explainable 

AI and uncertainty-aware detection, and the use of SHAP, LIME, graph reduction, and evidential frameworks to provide 

analyst trust and operational accountability is being made [8,32]. 

 

In malware analysis, the use of large-scale benchmark datasets that show complementary static, behavioral, and memory-

level artifacts has been a major breakthrough. In addition, classical static datasets, such as EMBER, provide the widest 

variety of PE-based features; however, they are still exposed to packing and obfuscation. Behavioral datasets such as 

BODMAS promote detection by providing runtime execution traces but at high computational expenses. Memory-centric 

resources such as CIC-MalMem and MALMEMANALYSIS-2022, along with others such as Volatility and Rekall, 

support the extraction of transient artifacts. This facilitates the application of various methodologies, including artificial 

feature extractors (e.g., VolMemLyzer [33]), autoencoder-based detectors [34], and mixed ML-forensic approaches [35]. 

Datasets such as Malware-1M, which are very large, and mobile datasets such as MalGenome add to the number of 

modalities, but they also have the problems of requiring a lot of storage space and being out of date. New multi-view 

datasets, such as MalMem2022 and similar resources, have combined the four perspectives of static, dynamic, memory, 

and network to eliminate single-view spots, although this has resulted in an increase in the complexity of fusion and the 

requirement for heterogeneous data handling [36–39]. When reviewed together, these datasets showcase the transition 

towards more sophisticated multimodal, memory-aware, and temporally contextual malware detection, which, in turn, 

calls for geometry-consistent fusion methods to be employed amidst high-dimensional heterogeneity. A comparative 

summary of the representative methods, strengths, limitations, and trends can be found in Table 1. 

 

Table 1. Survey of Foundational and Contemporary Research in Multi-View, Distributed, and Explainable Intrusion 

Detection Frameworks 

 

Reference Focus Area Methodology Strength Limitation 

 

[4] IDS survey Algorithmic

 comparison 
Multi-view emphasis High fusion complexity 

[5] Distribution shift Uncertainty

 estimation 
OOD detection Moderate complexity 
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[8] Explainable malware 

detection 

Graph reduction + XAI High interpretability Static  memory scope 

[11] Graph-based detection Dynamic GNN Strong modeling Heavy training cost 

[15] Hybridmalware detection Sequential DL High accuracy Imbalance sensitive 

[21] SDN-based IDS DL model survey Broad SDN coverage No fusion assessment 

[29] Privacy & AI security Federated/transfer 

learning 

Cross-domain 

generalization 

High computation 

[28] IDS with transformers ViT + metaheuristics High scalability Requires GPU 

[30] Real-time anomaly 

detection 

Online multivariate DL High throughput Low explainability 

[31] Fraud/anomaly detection Robust multi- 

domain learning 

Drift-resilient Not malware focused 

[32] Distributed IDS Metaheuristic feature 

selection 

Transparency No multimodal support 

[40] IoT intrusion detection Hybrid DL Good IoT performance Limited OOD handling 

 

2.1 Identified Research Gaps and Motivation 

In spite of the significant advancements in the intrusion detection area, the literature still indicates the existence of several 

unanswered questions: 

– Lack of geometry-aware multi-view fusion: Most of the current IDS frameworks depend on enhancement or feature-

level fusion strategies which are not able to maintain the intrinsic geometric relationships among diverse network and 

memory representations [43-46]. 

– Absence of leakage-free experimental protocols: The non-strict isolation of training, validation, and testing stages in 

many prior studies serves as a reason for the optimistic performance estimates which are the result of cross-split 

contamination during preprocessing or feature selection[47-50]. 

– Limited joint use of memory forensics and network telemetry: Even though the two modalities give complementary 

evidence, their combined use is still not much explored, while most of the studies are on single-view analysis or 

loosely coupled fusion schemes [51]. 

– Insufficient emphasis on calibration and interpretability: Detection accuracy is the main focus area of the existing 

IDS approaches and decision calibration, reliability, and explainability are neglected, which are important for analyst 

trust and operational deployment. 

 

All these gaps have led to the development of the GSTF framework which introduces geometry-aware Gromov–

Wasserstein alignment, leakage-free training, calibrated decision-making, and interpretable multi-view fusion among 

others. 

3. Materials and Methodology 

3.1. Architecture of the GSTF Framework 

An overview of the suggested Geometry-Aware Spatio-Temporal Fusion (GSTF) framework can be found in table 1, 

which consists of a robust intrusion detection system that does not leak information and uses network-flow telemetry and 

memory-forensics artifacts together. The pipeline starts with strict separation of train and test and preprocessing specific 

to the modality, followed by reduction of dimensions done independently in order to keep the characteristics of each view. 

Gromov-Wasserstein alignment is then applied to force geometry-consistent matching between different feature spaces. 

The fused embeddings are mapped using a ridge-based regression and are then further supplemented through 

discriminative augmentation to improve class separability. Finally, a calibrated classifier delivers trustworthy intrusion 

predictions, thus making uncertainty-aware decision-making that is suitable for real-life IDS deployment. 
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Figure 1. Architecture overview of the proposed GSTF framework. 

3.2. Dataset and multi-view structure 

 

This study employs the MAL-NetMem 2025 dataset introduced by Habibi Lashkari et al.[41] , which provides a large-scale, 

synchronized collection of network-flow telemetry and memory-forensics artefacts generated during controlled program 

executions. Each record contains paired behavioral and in-memory observations, resulting in a two-view representation 

essential for multimodal fusion. The subset used in this study included benign executions and backdoor malware, forming a 

binary and naturally imbalanced classification problem. 

 

The two modalities are represented as matrixes with high dimensions. The network-flow view, which contains dn temporal 

and statistical traffic descriptors, is formalized in Eq. (1) as follows: 

 
( ) .nN dnX


 ,                          (1) 

 

The memory-forensics view, encapsulating dm structural and semantic runtime attributes, is defined in Eq. (2): 

 
( ) .mN dmX


 ,                          (2) 

 

Binary class labels differentiating benign (0) and backdoor (1) samples are expressed as follows: Eq.  (3) 

 

{0,1} .Ny ,                          (3) 

 

As illustrated in Eqs. As described in Equations (1)-(3), the dataset comprises two semantically distinct and heterogeneous 

sem. Their complementary nature, combined with the characteristic imbalance between benign and malicious samples, 

motivates the leakage-free fusion, alignment, and calibrated detection pipeline developed in Section (3). 
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3.3. Leakage-free data splitting and pre-processing 

 

To maintain a strict separation between the training, validation, and evaluation phases, the dataset was first divided using a 

stratified split that preserved the natural class distribution. Let X(n) and X(m) denote the paired network and memory matrices 

defined in Sect. 2.1. The complete partitioning is expressed as.. (4), where all preprocessing steps are fitted exclusively to 

the training subsets: 

 

 ( ) ( ) ( ) ( )

train test train test train test, , , , , .n n m mX X X X y y ,                          (4) 

 

A small validation subset is subsequently extracted from  
train

n
X  and  

train

m
X ; this subset is used later for threshold calibration but 

remains untouched during the model fitting to prevent leakage. 

All feature columns were converted to floating-point format, and rows containing missing values in either view were 

removed. Each modality was standardized independently using statistics derived solely from the training data. As shown in 

Eq. (5), the standardized train and test representations for a given modality ,v n m  are 

 
( ) ( )

( ) ( )train test
train test, ,

v v
v vv v

v v

X X
X X

 

 

 
  ,                          (5) 

 

Where 
v  and 

v  are the per-feature means and standard deviations computed from
 
train

v
X . Eq. (5) ensures that neither the 

validation nor the test set influences the scaling factors, thereby preserving leakage-free pre-processing. 

 

Following standardization, Principal Component Analysis (PCA) is fitted independently on ( )v

trainX  to reduce dimensionality 

while retaining maximal variance. Let Wv denote the PCA loading matrix and PCA

v  the PCA centering vector for view v, 

both of which are learned exclusively from the training data. The resulting projected representation, which is used throughout 

the fusion process, is defined in Eq. (6) 

 

( ) ( ) PCA .( )v v

p v vX X W  ,                          (6) 

 

As indicated by Eq. (6), these PCA parameters are applied unmodified to the validation and test subsets, ensuring that the 

dimensionality reduction stage introduces no cross-split contamination. 

 

This leakage-free pre-processing pipeline produces the projected matrices 
 n

pX  and
 m

pX , which serve as the foundation for 

the geometry-aware fusion step presented in Sect. 2.3 and formalized through the Gromov--Wasserstein objective in Eq. (4). 

3.4. Gromov--wasserstein alignment 

 

The network flow and memory forensics views reside in heterogeneous feature spaces and therefore cannot be aligned 

directly through pointwise matching. To reconcile their geometric structures, we applied the Gromov--Wasserstein (GW) 

optimal transport formulation, which matches samples by comparing pairwise relational distances rather than raw 

coordinates. This geometric alignment is essential for multi-view malware analysis, in which the two modalities differ 

substantially in terms of dimensionality, semantics, and noise characteristics. 

 

Let 
 n

pX  and 
 m

pX  denote the PCA-projected representations. For each view, we constructed an intrinsic dissimilarity matrix 

by computing all pairwise Euclidean distances. These view-specific structures are defined in Eq: (7): 

 

   ( ) ( ) ( ) ( ) ( ) ( )dist , , dist , ,n n n m m m

p p p pC X X C X X  ,                          (7) 
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and represent the internal geometric organization of the modalities. As shown in Eq. (7), these matrices grow quadratically 

with the number of samples; therefore, they are computed on a random subset of the training set to maintain computational 

tractability and are denoted as 

 

The GW objective seeks a transport coupling   that best aligns these two relational structures. Using uniform marginals for 

both modalities, the optimization problem takes the form of Eq. (8) 

 

 ( ) ( )

( , )
, , ,

arg min , ,n m

ij k ik j
p q

i j k

L C C


    ,                          (8) 

 

Where  ,p q  denotes the admissible transport polytope and  
2

,L a b a b   is the squared loss function. Equation (8) 

aligns the two modalities by minimizing the discrepancies between their pairwise geometries and yielding the optimal 

coupling  . 

 

The resulting coupling provides a soft correspondence between the network and memory views, indicating which memory-

level structures best reflect the behavioral patterns captured in the network traces. This coupling is subsequently used to 

generate geometry-consistent fused targets, enabling cross-view regression and unified embedding, as detailed in Sect. 3.4. 

3.5. Regression-based cross-view mapping 

 

The optimal GW coupling   obtained in Section 3.4 provides a soft correspondence between the two modalities by 

identifying how memory-level structures relate to the patterns captured in the network flow space. To propagate this 

alignment to the entire dataset, the fused targets were first constructed on the GW subset by combining each modality's PCA 

projection with its GW-transported counterpart. These fused targets encode cross-modal geometric relationships and serve 

as supervision signals for the subsequent mapping. 

 

To extend this geometry to all samples, a ridge regression operator was learned for each modality. Let 
 v

pX  denote the PCA-

projected view for modality { , }v n m , and let 
GWX  denote the corresponding fused target. The linear operator R that 

transfers samples into the fused space is obtained by solving the regularized regression problem shown in Eq. (9): 

 

2
( ) 2argmin ,v

R p GW F
F

R RX X R    ‖ ‖ ,                          (9) 

 

Where 
F‖ ‖  is the Frobenius norm, and   is a Tikhonov regularization term. As defined in Eq. (9), R* captures the GW-

imposed geometry and provides a deterministic mapping applicable to all TRAIN, VALID, and TEST samples without 

introducing cross-split information leakage. 

After computing nR  and mR  for the network and memory modalities, these operators were applied to their respective PCA 

projections. The resulting aligned embeddings are concatenated to form a unified fused representation, as defined in Eq. (10) 

 

( ) ( ) ,n m

n p m pZ R X R X    ‖ ,                          (10) 

 

Where ‖ ‖  denotes the feature concatenation. Equation (10) produces a joint latent representation that integrates behavioral 

and memory-level evidence within a common geometric space, forming the foundation for the discriminative augmentation 

step described in Sect. 3.5. 

3.6. Discriminative augmentation and balanced training 
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The fused representation Z from Section 3.5 is enriched with additional discriminative statistics to capture the class-

conditional geometric structure of the data. For each class {0,1}c , the mean vector 
c  and regularized covariance matrix 

c  are estimated from the training samples. Each fused vector zi is then augmented with its distances to the nearest class 

means, as well as projection residuals computed using the top eigenvectors of
c , expressed as 

 

,ic i c c ir z U U z  •
,                          (11) 

 

where Uc contains the dominant eigenvectors. These descriptors are concatenated with Z to obtain the augmented 

representation Zfull, which is constructed strictly using training data to preserve leakage-free processing. 

Owing to the pronounced imbalance between benign and backdoor samples, training was performed on a controlled 

rebalanced subset. A two-phase strategy is employed: (i) Random Oversampling is performed for all minority classes up to 

a predetermined limit, and (ii) class-specific SMOTE is applied only when the minimal neighbor condition allows synthesis. 

This methodical approach not only amplifies the minority class but also prevents the occurrence of over-sampling and at the 

same time, the validation and test sets are allowed to keep their original class distribution. 

3.7. Embedding, classification, and calibrated decision rule 

 

To enhance class separability, the balanced representation Zfull is first transformed using a PCA pre-processing step, followed 

by a neighborhood component analysis (NCA) embedding, both fitted exclusively on the balanced training subset to maintain 

strict leakage control. The resulting embedded vectors served as inputs to a class-weighted Random Forest classifier, where 

the weights were inversely proportional to the class frequencies, thereby improving the recall for the minority (backdoor) 

class. 

A calibrated decision rule was then constructed using an untouched validation split. The optimal probability threshold    is 

selected by maximizing the recall while enforcing a precision floor, as defined in Eq. (12). This produces a confidence-aware 

decision boundary that is suitable for operational settings: 

 

arg max Recall( ) s.t. Precision( ) ,      ,                          (12) 

 

Where   denotes minimum acceptable precision. This calibration ensures that low-confidence predictions can be abstained 

from or escalated. 

The complete workflow, from pre-processing and GW-based alignment to fused regression mapping, discriminative 

augmentation, balanced training, embedding, classification, and threshold calibration, is summarized in Algorithm 1, which 

outlines the full leakage-free GSTF pipeline used in this study. 

 

Algorithm 1 GSTF Leakage-Free Multi-View Fusion & Detection 

 

Require: CSV, OUT_DIR, SEED, nouter, ninner 

Ensure: Saved artifacts per fold; summary metrics 

1: set random seed    

2: load dataframe D; normalize labels 

3: split columns into V1 (net) and V2 (mem) 

4: Convert to numeric; drop rows with NaNs 

5: X1 ← D[V1], X2 ← D[V2], y encode(D.label) 

6: init StratifiedKFold SKFouter 

7: for each outer fold (Itr,Ite) 

8: create train/test splits 

9: – Standardize (train only): 

10: sc1,sc2 ← fit on train; transform train/test 

11: – Per-view PCA (train only): 

12: PCA1,PCA2 fit on train 

13: obtain Atr,Btr,Ate,Bte; NaN/Inf → 0 
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14: – GW coupling (train only) 

15: subsample train (optional) 

16: G ← gromov_wasserstein_coupling(.) 

17: – Ridge-based fusion (train only): 

18: R1,R2 Ridge fits using G 

19: F ← 0.5 (R1(A) + R2 (B)) 

20: – Geometric extras (train only): 

21: State compute class means/covariances/eigens 

22: Etr, Ete extras_builder(F) 

23: – Classifier inputs: 

24:  ,clf

tr tr trX F E  

25: SMOTE(train) → (Xbal,ybal) 

26: PCA_pre.fit(Xbal); optional NCA 

27: ,emb emb

tr teX X  transform via (NCA or PCA_pre) 

28: – Train classifier: 

29: clf ← RandomForest.fit ( , )emb

tr balX y  

30: – Threshold calibration (train only): 

31: holdout → tune threshold t* for precision floor 

32: – Evaluate (test never seen): 

33:  . _ emb

te tep clf predict proba X  

34:  pred tey p t   

35: compute metrics; append results 

36: save {scalers, PCAs, R1,R2, PCA_pre, NCA, clf, extras, t* } 

37: end for 

38: Diagnostics: mismatch, permutation, ablation, PR/calibration curves, threshold 

stability 

39: return summary metrics, artifacts, diagnostics 
 

4. Results and Discussion 

4.1 Experimental protocol 

The experiments were performed using the two-view MAL-NetMem subset that was processed and described in Section 3.2. 

This is where the aligned network flow and memory forensics matrix application resulted in the pre-processing of ≈ 118,500 

backdoor samples and 1,645 benign samples. The classes in the final combined dataset are therefore still imbalanced, and 

the dimensionality is also very high, similar to both modalities. The model was evaluated according to a 5-fold stratified 

cross-validation scheme, which guaranteed that the original class distribution was maintained throughout each fold. To avoid 

compromising the pipeline's leakage-free guarantees, all transformations, such as scaling, view-specific PCA, GW 

alignment, ridge fusion, geometric feature extraction, SMOTE balancing, PCApre, and NCA, are fitted exclusively on the 

corresponding training split. The performance for each held-out fold is measured in terms of accuracy, precision, and recall, 

with decision thresholds determined only through inner training-validation splits. 

4.2 Performance of the GSTF fusion pipeline 

 

The cross-validation results of the proposed GSTF pipeline are summarized in Table 2, which conveys the metrics of 

accuracy, precision, and recall (mean ± std) together with their ranges observed over the five outer folds. The performance 

of the model was remarkable, with a mean accuracy of approximately 99.84% (with a minimal deviation of 0.03%), mean 

precision of 99.84% (±0.04%), and perfect recall of 100% across all folds. This indicates that no malicious samples were 

overlooked during the evaluation process. Figure 2 also shows the accuracies of both the complete pipeline and permutation 

baseline for each fold. The complete method demonstrates a consistently higher accuracy in all the folds, while the 

permutation baseline accuracy remains at 98.6% approximately. This affirms that the GSTF pipeline learns not only from 
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the dataset but also from the cross-view structure and not from the dataset artifacts. The tight clustering of accuracy values 

in Figure 2 also signifies a stable generalization behavior and confirms the effectiveness of the leakage-free training protocol. 

 

Table 2. Cross-validation performance of the GSTF pipeline across five outer folds. 

 

Metric   Mean ± Std Min – Max 

 

Accuracy (%)   99.84 ± 0.03 99.78 – 99.88 

Precision (%) 99.84 ± 0.04 99.77 – 99.88 

Recall (%)  100.00 ± 0.00 100 – 100 

 

 
Figure 2. Accuracy across folds for the full GSTF pipeline compared with the permutation baseline. 

4.3 Geometry alignment via gromov--wasserstein analysis 

 

The Gromov--Wasserstein (GW) distortion was used to assess the effect of the proposed fusion strategy on cross-view 

consistency. From the results presented in Figures 3a and 3b, it can be observed that the initial disagreement or mismatch 

between the network and memory manifolds is quite significant, as the pre-fusion distortion values vary from approximately 

7.26 to 7.56 in different folds. Initially, the pre-fusion distortion values at different folds varied from approximately 7.26 to 

7.56, indicating a considerable distance between the network and memory manifolds. The ridge fusion guided by GW was 

applied, and the distortion consistently decreased to the range of 3.45 to 3.78, which signifies an average improvement of 

almost 50%. The aforementioned reduction has also been illustrated in the scatter plot of Figure 3c, where it can be seen that 

all points are located precisely above the diagonal, thus confirming the fact that each fold has gained from the reduction in 

geometric discrepancy. These findings indicate that the GSTF pipeline succeeds in aligning diverse network and memory 

representations, resulting in a fused space that is coherent and thus more suitable for classification in downstream tasks. 
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(a) GW distortion per fold (before vs. after).     

 

 
 (b) Percentage reduction in GW distortion. 

 

 
(c) Scatter plot of GW distortion before vs. after 

 

Figure 3. Gromov--Wasserstein (GW) distortion analysis across folds: (a) before/after distortion, (b) percentage 

reduction, and (c) monotonic improvement of fused geometry. 
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4.4 Component-level evaluation of the fusion pipeline 

 

The contribution of each pipeline component was quantified by comparing (i) the full GSTF pipeline, (ii) a baseline formed 

by the raw PCA concatenation of the two views, and (iii) a fused-only variant that omits the geometric extras. The results 

are summarized in Table 3 and visualized in Figure 4a and 4b. All values are reported across the same five outer folds; 

detailed plots are from the project diagnostics 

 

 
 

(a) Ablation results: accuracy across folds.    

 

 
(b) Accuracy distribution (boxplot) across folds. 

 

Figure 4 (a) and (b). Comparison of GSTF Against PCA-Concatenation and Fused-Only Variants. 

 

 

Table 3. Component-Level Performance Comparison (mean and range across five outer folds). 

 

Method Accuracy (%) Precision 

(%) 

Recall (%) 

Full GSTF (proposed)  99.84 

(99.83–99.87) 

99.84 

(99.77–

99.88) 

100.0 

(100–100) 

Raw PCA 

concatenation  

99.72 

(99.70–99.75) 

99.70 

(99.70–

99.74) 

100.0 

(100–100) 

Fused-only (no 

extras)  

99.68 

(99.65–99.70) 

99.67 

(99.65–

99.69) 

100.0 

(100–100) 
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Key findings. 

 The entire GSTF pipeline has been found to be the most effective compared to the two baselines in all folds (Table 

3). Although the improvement is quite small in absolute percentage points, it is consistently and statistically stable 

across the different folds. 

 The ablation plots (Figure 4) reveal that the complete pipeline achieves the highest median accuracy and the least 

inter-fold variance, which is a sign of increase in robustness. 

 The combined effect of GW alignment + ridge fusion + geometric extras has been proven to be more advantageous 

than simple concatenation or fusion without extras, thus confirming the need for adding complexity to the pipeline. 

4.5 Reliability, calibration, and comparative analysis 

 

The calibrated operating point selected during the inner validation remained the same across all five folds, with the threshold 

being t* = 0.01. This finding implies that the calibration technique is robust enough to deal with fold-specific variations and 

does not interfere with the process of threshold selection. Recall was kept at 100% for all the evaluation folds, whereas 

precision had only slight variations of approximately 99.84% throughout the folds. The radar plot in Figure 5 provides a 

quick overview of these reliability metrics and shows the consistently high performance of the GSTF pipeline. 

 

To provide context for these findings, Table 4 presents a comparison of the proposed method with the most widely used 

baseline methods in the recent literature. The GSTF pipeline shows the highest accuracy and precision among all methods, 

which indicates that the integration of GW alignment, ridge-based fusion, and geometric extras in a leakage-free environment 

is beneficial and effective in terms of recall, with no instances of missing signals. 

 

Overall, the GSTF pipeline shows great dependability, steady adjustments, and remarkable performance. Its high recall 

indicates that it is robust to missed detections, whereas the consistency in precision indicates that it is resistant to false 

positives. These features, together with its leakage-free structure and multi-view alignment, make the method a realistic and 

reliable choice for malware detection in the real world. 

 

Table 4. Comparison of detection performance between existing methods and the proposed GSTF model. 

 

Study Method Accuracy 

(%) 

Precision 

(%) 

Recall (%) 

[42] ML Framework >99.0 – – 

[43] Logistic Regression (LR) 99.97 – – 

[43] Gradient Boosted Trees 

(GBT) 

99.94 – – 

[44] QDFG 98.01 – – 

[45] XGBoost Highest – – 

[46] IoT Malware Classifier >98.0 – – 

[47] SVR 95.74 94.76 98.06 

[48] AVID (DREBIN) – 100.0 – 

[48] AVID (AMD) – 99.22 – 

[49] Random Forest IDS Highest – – 

Proposed GSTF  GW+Fusion+RF 99.84 99.84 100.0 

*Note: A dash (--) indicates that the metric was not reported 
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Figure 5. Radar plot summarizing accuracy, precision, and recall for the full GSTF pipeline. 

 

4.6 Discussion and Limitations 

 

The experimental results confirm the importance of geometry-aware fusion in intra-network security, as it could totally open 

up detection as well as other previously unexplored applications when heterogeneous network-flow and memory forensics 

views are together exploited. The GSTF framework achieves high accuracy and low variance consistently across all cross-

validation folds reflecting stable generalization even with natural class imbalance. The stability of this method indicates that 

pre-processing methods which guarantee no leakage, along with dimension reduction specific to the modalities, are crucial 

to eliminate the optimistic bias in the evaluation of multimodal IDS. 

 

It is indeed the case that in the transport of Gromov–Wasserstein distortion, which is the measure of the distance between 

two measures, the greatest reduction is achieved after the alignment when geometry-consistent transport is used. Unlike the 

naive concatenation strategies which merely combine the different views, GSTF first does the pairwise alignment of the 

samples according to their relational similarity—rather than raw feature correspondence—which eventually leads to better 

representation coherence and upstream classification reliability. This phenomenon gets even more pronounced since ablation 

study outcomes reveal that the GW alignment removal or the discriminative augmentation withdrawal results in the detection 

robustness being notably lowered. 

 

From the point of view of operational IDS, calibrated confidence estimation is the main practical benefit that comes up. The 

calibration analysis shows that rather the opposite of it being the case, GSTF generates poorly-aligned confidence scores, 

which greatly reduces the chance for overconfident false positives and facilitates the setting of decision thresholds for analyst 

intervention or abstention that are safer. This kind of system is very appropriate for real-world deployments because alert 

fatigue and trust erosion have already become the persistent challenges. 

 

In spite of these advantages, there are still some limitations that need to be recognized. To begin with, the existing assessment 

is limited to a large-scale dataset, a binary classification setting, and a future study will still be needed for the extension of 

the framework to multi-class or cross-dataset scenarios, which remain an essential direction for research. Secondly, even 

though the proposed pipeline is computationally efficient compared to deep multimodal architectures, Gromov–Wasserstein 

alignment still requires a significantly non-trivial overhead in the case of very large or streaming data. Finally, even though 

the interpretability is improved through example-driven explanations, the inclusion of richer causal or temporal explanations 

would still further strengthen the analyst usability. 
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To conclude, the findings demonstrate that GSTF provides a methodical compromise between robustness, interpretability, 

and reliability, besides revealing future to scalability, online adaptation, and generalization across malware families and 

deployment areas. 

5. Conclusion 

This study presents a strong, leak-proof multi-view fusion system for malware detection that combines heterogeneous 

network flow and memory forensics data perfectly. By means of Gromov–Wasserstein alignment, the GSTF pipeline 

unifies intrinsic geometric discrepancies among different types of data, resulting in a fused representation that remarkably 

boosts classification performance. The regression-based cross-view mapping and discriminative augmentation lead to an 

even larger improvement in class separability, while the balanced training method deals with the extreme class imbalance 

and maintains the leak-proof guarantees intact at the same time. 

 

The large-scale MAL-NetMem 2025 dataset yielded experimental results representing superb accuracy, precision, and 

total recall, hence always outperforming the basic fusion and classification techniques. The significant decrease in the 

Gromov–Wasserstein distortion confirms the efficiency of geometric alignment, and the ablation study indicates the 

significance of each pipeline module. Moreover, the calibrated decision threshold produces a detection that is both reliable 

and confidence-aware; thus, it is suitable for operational deployment. 

 

Research in the area of intrusion detection systems has advanced significantly, but there are still important gaps which 

can be addressed in the course of future research. The current IDS do not feature any geometry-aware fusion methods for 

combining disparate data sources, which are based on principles; they are usually based on data leaking-prone 

experimental protocols, and their integration of network telemetry and memory-forensics evidence is very rare and mostly 

done unification-wise. On the other hand, many previous methods do not consider calibration, interpretability, and 

robustness under class imbalance and distribution shifts at all, which makes it hard for the analysts to trust the system and 

consequently, limits real-world adoption. However, bringing these issues to a resolution is a matter of precedence since 

it would lead to the creation of reliable, trustworthy, and operationally viable intrusion detection systems. 

 

The GSTF framework will be extended in future work to include more modalities, such as static and dynamic behavioral 

traits, which will further enhance the fused representation. Real-time execution and scalability improvements will be 

considered as a means to allow production cybersecurity environments to absorb the technology. In addition, incorporating 

sophisticated uncertainty measurement and interpretability methods will boost analysts’ trust and ease the path to gaining 

insights. Finally, adapting malware detection systems to changing malware landscapes through continuous learning and 

domain change remains a critical area for ensuring sustainability and robustness. 
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