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ABSTRACT

Given the recent increase in cyberattacks, malware detection remains a critical component in Android
devices. Traditional signature-based methods, while effective against known types of malware,
highlight the need for more advanced techniques such as machine learning. This study provides a
detailed comparison of various machine learning methods for Android malware detection, focusing on
their effectiveness and limitations. We evaluate different models, including logistic regression, support
vector machines, random forests, and XGBoost, to determine their efficacy in Android malware
detection. Through comprehensive experiments, we assess the models based on parameters such as
accuracy, precision, recall, and false positive rate. The results reveal clear advantages and disadvantages
among the different machine learning algorithms, offering significant insights into their practical
applications. This paper underscores the potential of machine learning algorithms to enhance malware
detection in Android while highlighting key areas for further research and improvement. Our findings
support the continuous development of robust and adaptable cybersecurity solutions in the Android
environment, emphasizing the critical role of machine learning in defending against evolving malware
threats.
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1. Introduction

In the rapidly evolving mobile landscape, the proliferation of Android smartphones has heightened the focus on the security
and performance of these systems. The exponential rise in mobile app usage, driven by shifting user behaviors and global
events such as pandemics, has made mobile devices indispensable, a trend that is expected to continue (1). However, this
digital expansion has also led to a significant increase in malware threats, posing critical risks to the efficiency,
confidentiality, and security of data on Android devices (2).

Android’s open-source nature, while fostering innovation, also makes it an attractive target for cybercriminals (3).
Android’s openness allows for extensive program modifications, which can inadvertently introduce vulnerabilities that
malicious actors may exploit (4). This vulnerability underscores the urgent need for studyers and developers to deepen their
understanding of security threats facing Android smartphones and to devise robust detection strategies (5). ML is
particularly well-suited for this task as it enables the creation of models capable of identifying malware with minimal
training data, without relying on predefined signatures (6).

The primary objectives of this study are to identify the most effective ML model for malware detection, enhance its
performance, and mitigate threats on Android platforms through static analysis. The study will particularly focus on critical
attributes such as the permissions declared within the AndroidManifest.xml file to uncover potential security weaknesses.
By utilizing a range of classification and clustering algorithms, this study systematically evaluates various machine learning
approaches using the NATICUSdroid dataset. This dataset is specifically focused on Android permissions, including both
native and custom permissions, which are critical in identifying potential vulnerabilities within Android application. A
comprehensive evaluation of base algorithms, including Random Forest, Logistic Regression, XGBoost, and Support
Vector Machine, will be conducted to identify the top-performing model. This study aims to lay a solid foundation for a
robust malware detection system by rigorously assessing these models using the NATICUSdroid dataset.

In this study, we will explore various methodologies and findings related to Android malware detection, with a focus on
the application of machine learning techniques. Section 5 provides an overview of related works, discussing several studies
and their methodologies, highlighting the progression of machine learning approaches in the detection of Android malware.
In Section 6, we delve into specific machine learning algorithms, including Random Forest (RF), Support Vector Machine
(SVM), XGBoost, and Logistic Regression. Each algorithm's functionality and suitability for malware detection will be
thoroughly explained, illustrating their unique capabilities in identifying malicious behaviors. Section 7 details the
methodology of our study, beginning with a comprehensive description of the NATICUSdroid dataset, outlining the sources
and preprocessing steps involved to prepare the data for analysis.Section 8 presents the results of our analysis, including
the evaluation metrics used to assess model performance, such as accuracy, precision, recall, F1-score, and ROC-AUC.
Performance results for different train-test splits are provided to offer a comprehensive view of each model's capabilities
under varying conditions. In Section 9, we discuss our findings in-depth, particularly focusing on the top-performing model.
Finally, Section 10 concludes the study by summarizing our key findings, emphasizing the effectiveness of model, and
discussing its adaptability and reliability in real-world applications. We also provide recommendations for future study
directions, aiming to further refine machine learning techniques in the domain of Android cybersecurity. In this study, we
will explore various methodologies and findings related to Android malware detection, with a focus on the application of
machine learning techniques.

2. Related works

In this section we will explore various methodologies and findings related to Android malware detection Malware, or
malicious software, is designed to exploit vulnerabilities in computer systems, breaching security principles such as
confidentiality, integrity, and availability. Android malware specifically targets devices running the Android operating
system, aiming to steal information or cause damage. This category of malware includes various types, such as Trojans,
spyware, adware, ransomware, worms, botnets, and backdoors. Additionally, app collusion, where multiple apps
collaborate for malicious purposes, is a growing concern. Despite Android's built-in security features, vulnerabilities persist
due to design flaws and security loopholes. Understanding these risks is crucial for accurately identifying and assessing
malware threats. Android devices are susceptible to a range of attacks, including hardware-based, kernel-based, HAL-
based, and application-based attacks (7).Without robust security measures, Android applications can be easily
compromised by attackers familiar with the platform. User errors and developer oversights further increase risks. Users
may unknowingly grant excessive permissions to apps, allowing malicious actions, while developers might inadvertently
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introduce vulnerabilities into their apps. Despite existing guidelines and recommendations, some developers fail to write
secure code for their applications (8).

(Liu et al., 2020) Machine learning (ML), a branch of artificial intelligence, plays a pivotal role in malware detection by
using data and algorithms to mimic human learning processes with high accuracy. Traditional methods rely on analyzing
past data to make predictions. The machine learning lifecycle includes several key phases: data preprocessing, feature
selection, model training, model evaluation, model deployment, and data extraction. Studyers are focused on improving
conventional algorithms' performance by selecting appropriate ML algorithms to enhance detection efficiency. These
models can distinguish between benign and malicious Android applications, aiding in the identification of both known
malware variants and entirely new threats, positioning ML techniques at the forefront of this challenge.

(Karbab et al., 2018) MalDozer, a deep learning-based system, excels in detecting Android malware by analyzing API
method call sequences. It is particularly effective in attributing malware to specific families and operates efficiently across
various hardware platforms. However, concerns remain about the dataset quality and the comprehensiveness of its detection
methods. MalDozer's adaptability to 10T devices and its minimal preprocessing requirements are notable advantages. It
achieves an F1 Score ranging from 96% to 99% in malware detection and 96% to 98% in family attribution, demonstrating
exceptional precision and recall. Its framework is versatile enough for large-scale deployment, and it automatically extracts
features from raw APl method calls during training, reducing the need for manual intervention. However, its reliance on
DEX bytecode for core functionalities may overlook malicious activities in native code or web-based apps.

Roy et al., (2020) A method that maps API calls to features and aggregates them to determine their frequency, followed by
a machine learning evaluation using a dataset comprising obfuscated and benign applications. The method achieves a high
ROC AUC score, demonstrating its efficacy in malware detection. This novel integration of feature aggregation and
machine learning yields high accuracy, even when the feature set is reduced by 75.9%. However, the preprocessing and
feature extraction phases may demand substantial computational resources, potentially limiting deployment on low-end
systems.

(Shao et al., 2021) FB2Droid addresses the imbalance in malware sample distribution by leveraging family-based
information, potentially enhancing detection accuracy. The use of the relief feature selection algorithm to choose relevant
features from APK files contributes to the efficiency of the detection process. The paper introduces two new sampling
strategies to mitigate class imbalance, which could improve classifier performance on minority class samples.
Enhancements in detection accuracy and F score by 2.3% and 2.0%, respectively, are reported. However, the validity of
these findings depends on the robustness of the experimental design and the datasets employed. FB2Droid's heavy reliance
on accurate malware family information, which might not always be available or correctly labeled, is a potential limitation.

(NDSS Symposium, 2024) DREBIN performs extensive static analysis to extract numerous features from applications,
facilitating malware identification without runtime monitoring. It achieves an impressive 94% detection rate with minimal
false alarms, although its efficacy in real-world scenarios may vary. DREBIN excels in providing explanations for its
detections, helping users understand the rationale behind alerts. Its resource efficiency, with an average analysis time of
about 10 seconds, makes it suitable for smartphone use. However, DREBIN's reliance on static analysis might render it
ineffective against malware employing dynamic code execution or obfuscation techniques.

(Mahindru & Sangal, 2020) The extraction of dynamic permissions from Android applications is crucial for detecting
malware, especially given the dynamic nature of Android security. This approach is essential for identifying malware that
employs runtime behaviors to evade static analysis. Evaluating several classifiers, including Naive Bayes, Decision Tree
(J48), Random Forest, Simple Logistic, and K star, found that Simple Logistic slightly outperformed others in terms of
malware classification accuracy.

(Urooj et al., 2022) A novel model combining innovative static feature sets with extensive malware sample datasets marks
a significant advancement over traditional methods, achieving a 96.24% accuracy rate with a low false positive rate of
0.3%. However, the model's handling of unnecessary permissions requested by Android applications remains unspecified,
potentially impacting its effectiveness. The use of ensemble learning techniques, particularly with algorithms like AdaBoost
and Support Vector Machine (SVM), enhances the model's performance in detecting malware, demonstrating a strong
understanding of advanced ML techniques.
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(Fallah & Bidgoly, 2019) Given the prevalence of Android devices and the corresponding malware threats, cybersecurity
becomes a critical concern. A comparative analysis of different algorithms is essential to determine their effectiveness in
malware detection. This benchmarking process requires a comprehensive dataset of Android applications and performance
metrics to assess the algorithms' accuracy, speed, and reliability. The findings could significantly improve Android security
and protect users from malicious software. (Gautam et al., 2023) A significant cybersecurity issue, particularly in Android
malware detection, remains highly relevant due to the widespread use of Android devices. Static analysis of app manifests,
as employed in some studies, extracts features to identify potentially malicious behavior. However, the need for dynamic
and hybrid analyses is emphasized for future study, as current methods may not fully capture the complexities of malware
behaviors applied Support Vector Machine (SVM) and K-Nearest Neighbors (KNN) algorithms for classification tasks,
achieving average accuracy rates of 79.08% for SVM and 80.50% for KNN. While promising, the relatively low true
positive rate for SVM raises concerns for practical applications, where missing malicious apps could have significant
consequences. (Mahindru & Sangal, 2020) MLDroid stands out as a web-based solution for dynamic analysis to identify
malware within Android apps. By leveraging machine learning algorithms, it thoroughly examines Android application
packages (.apk files). The framework's feature selection methodologies pinpoint significant features from vast datasets,
which are then utilized to train a range of machine learning models. MLDroid achieves a robust detection rate of 98.8% for
malware within real-world apps, demonstrating its effectiveness in flagging malicious software. The framework's
incorporation of multiple machine learning techniques, including deep learning, clustering, and decision tree approaches,
reflects a holistic and resilient strategy for malware detection. However, there is concern about potential overfitting to the
training data, which might impact the framework's adaptability to new, unseen malware instances. (Lee et al., 2021) The
use of genetic algorithms for feature selection in machine learning models presents a promising avenue for enhancing
Android malware detection efficiency. By prioritizing the most relevant features, this approach can improve the speed and
accuracy of machine learning algorithms. However, to ensure its effectiveness and address potential limitations, it is crucial
to compare it with alternative feature selection techniques. Real-world applicability must be assessed through testing across
diverse datasets and scenarios to validate the method's reliability and robustness conducted a thorough comparison of nine
distinct machine learning algorithms, revealing that genetic algorithm-based feature selection outperforms the commonly
used information gain-based technique. However, the extensive feature selection performed by the genetic algorithm
requires further verification to establish the generalizability of the results. (Azeem, 2024) Machine learning approaches
have significantly improved malware detection, offering varying levels of accuracy, computational efficiency, and ease of
implementation. Random Forest (RF) and Convolutional Neural Networks (CNN) typically achieve the highest accuracy,
often exceeding 97%, due to their robustness and ability to capture complex patterns. However, they require substantial
computational resources and are slower in prediction. Support Vector Machines (SVM) also perform well, particularly in
high-dimensional spaces, but need careful tuning and are less scalable for large datasets. Simpler models like Logistic
Regression (LR) and K-Nearest Neighbors (KNN) are easier to implement and computationally less intensive, making
them suitable for smaller datasets or initial experiments, though they generally offer lower accuracy. Neural Network
Multilayer Perceptron (nnMLP) models, while demanding in terms of resources, provide accuracy comparable to CNNs.
The choice of model should balance accuracy, computational demands, and the specific requirements of the task.
(Seoungyul, 2019) Low-dimensional features combined with tree-based ensemble models provide an efficient and accurate
approach to malware detection, addressing the challenges of high-dimensional data and computational inefficiencies.
Among the ensemble models, XGBoost consistently delivers the highest accuracy and scalability, making it ideal for large
datasets, while Random Forest and Extra Trees offer a balance of computational efficiency and robustness. AdaBoost
enhances accuracy by focusing on difficult-to-classify instances but can be slower in training compared to XGBoost.
Feature reduction through techniques like Window Entropy Map (WEM), API Call Frequencies, and Opcode Sequences
helps streamline the detection process, maintaining high.

Table 1. Related works

Author Key Focus Techniques/Algorithms Performance/Outcome Limitations
Karbab et al., Android Deep learning based F1 Score: 96 99% for Relies on DEX
2018 malware system detection; 96 98% for bytecode, may
detection family attribution.  overlook
through  API Adaptable to IoT, malicious
call sequence minimal preprocessing activities in
analysis native code or

web based apps
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Roy et al, Malware Machine learning High accuracy with High
2020 detection evaluation wusing ROC 75.9%  reduction in computational
using feature AUC score feature set resource demand
mapping  of for
API calls preprocessing
and feature
extraction
Shao, 2021 Addressing Relief feature selection, 2.3% increase indetection Relies heavily on
malware family based information ~ accuracy; 2.0% increase accurate
sample in F score malware family
distribution information,
imbalance which may not
always be
available or
correctly
labelled
Daoudi et al., Static analysis Machine learning, static 94%  detection rate, May be
2022 for malware analysis minimal false alarms, ineffective
identification resource efficient (10 against malware
seconds average analysis using dynamic
time) code execution
or  obfuscation
techniques
Mahindru & Dynamic Naive Bayes, Decision Simple Logistic slightly Not  explicitly
Sangal, 2020 permission Tree, Random Forest, outperforms other mentioned
extraction for Simple Logistic, K star classifiers in malware
malware classification accuracy
detection
Urooj et al., Innovative Ensemble learning, 96.24% accuracy rate, Handling of
2022 static feature AdaBoost, SVM 0.3% false positive rate unnecessary
sets for permissions
malware requested by
detection apps remains
unspecified
Fallah & Comparative Various machine learning Highlights relative  General
Bidgoly, 2019  analysis of algorithms performance of different benchmarking of
malware algorithms algorithms,
detection specific
algorithms outcomes not
detailed
Gautam et al.,, Static analysis Support Vector Machine 79.08% accuracy for Potential risk of
2023 of app (SVM), K Nearest SVM; 80.50% for KNN. missing
manifests Neighbors (KNN) Raises concerns with the malicious apps
low true positive rate for due to lower true
SVM positive rate for
SVM
Mahindru & Dynamic Machine learning (deep 98.8% detection rate for Potential
Sangal, 2020  analysis  for learning, clustering, real world apps, holistic overfitting to
Android decision tree) strategy training data,
malware may impact
detection adaptability  to
new, unseen
malware
Lee et al, Genetic Genetic algorithm based Outperforms information Extensive
2021 algorithms for feature selection gain based technique, feature selection
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selection in nine distinct ML  verification for
ML models algorithms generalizability
Azeem, 2024 Random Forest (RF), RF and CNN achieve RF and CNN
Machine Convolutional Neural highest accuracy (>97%); require
learning Networks (CNN), Support SVM performs well in substantial
approaches in Vector Machines (SVM), high-dimensional spaces  computational
malware Logistic Regression (LR) resources
detection
Seoungyul, Low- XGBoost, Random Forest, XGBoost delivers highest AdaBoost slower
2020 dimensional Extra Trees, AdaBoost accuracy and scalability; in training
features with feature reduction compared to
tree-based maintains  performance XGBoost
ensemble while reducing
models computational load
Juwono, 2022  Behavior Random Forest (RF), RF most effective with SVM  requires
analysis Support Vector Machine Cuckoo datasets (Recall: more
sandboxes in  (SVM), Decision Tree 96.48%, Precision: computational
malware (DT), k-Nearest Neighbors  98.23%, F-Measure: resources
detection (KNN) 97.35%); Cuckoo
combined with RF top
choice  for  malware
detection
Syuhada, Malware K-Nearest Neighbors (K- DT achieves highest Small dataset;
2019 detection NN), Decision Tree (DT), detection accuracy (99%) results may not
using machine Support Vector Machine with low FPR (0.021%) generalize  well
learning (SVM) to larger or more
algorithms diverse datasets

STAHP

3. Machine Learning Algorithms

This section provides a detailed overview of the machine learning algorithms employed in our experiment, each of which
brings distinct characteristics and strengths that render them particularly suitable for different facets of malware detection
on Android platforms. These algorithms were chosen for their proven efficacy in handling the complexities inherent in
malware classification, especially in environments with diverse and high-dimensional data (IBM, n.d.).

3.1 Random Forest

Random Forest is an ensemble learning method that constructs a multitude of decision trees during the training process and
outputs either the mode of the classes (in classification tasks) or the mean prediction (in regression tasks) of the individual
trees. This approach is particularly advantageous in scenarios involving high-dimensional datasets with many features,
such as those encountered in malware detection.

The strength of Random Forest lies in its ability to reduce overfitting through the aggregation of multiple decision trees,
each trained on a random subset of the data. This ensemble approach ensures that the model generalizes well to unseen
data, making it robust against the noise and variability often present in large, complex datasets. Moreover, Random Forest's
capacity to capture intricate interactions between features enhances its effectiveness in identifying subtle patterns that may
distinguish between benign and malicious applications (Donges, 2024).

3.2 Support Vector Machine (SVM)

Support Vector Machine (SVM) is a supervised learning algorithm widely recognized for its effectiveness in classification
tasks, particularly in high-dimensional spaces. SVM operates by identifying the hyperplane that best separates the data into
distinct classes, maximizing the margin between different classes (e.g., malware vs. benign). In the context of malware
detection, SVM is particularly suited for scenarios where the boundary between classes is clear but complex. By leveraging
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kernel functions, SVM can map input data into higher-dimensional spaces, enabling the model to construct non-linear
decision boundaries that can better capture the nuances in the data. This makes SVM a powerful tool for distinguishing
between benign and malicious software in environments where the data exhibits complex relationships (Abdullah &
Abdulazeez, 2021)

3.3 XGBoost

XGBoost, or Extreme Gradient Boosting, is an advanced decision tree-based ensemble algorithm that has gained
widespread popularity due to its superior speed and performance in various machine learning competitions. XGBoost builds
on the concept of boosting, where weak learners (typically decision trees) are sequentially trained to correct the errors made
by the previous models, leading to a strong overall model. In malware detection, XGBoost’s ability to handle large-scale
datasets and its efficiency in focusing on the most informative features make it particularly effective. The iterative nature
of boosting allows XGBoost to refine its predictions by learning from the mistakes of prior iterations, which is especially
beneficial when dealing with imbalanced datasets where the occurrence of malware is much less frequent than benign
software.

3.4 Logistic Regression

Logistic Regression is a foundational binary classification algorithm that models the probability of a binary outcome based
on one or more predictor variables. Despite its simplicity, Logistic Regression is remarkably effective in scenarios where
the relationship between the features and the target variable is linear or approximately linear. In the context of malware
detection, Logistic Regression serves as an essential baseline model due to its interpretability and computational efficiency.
It is particularly useful in cases where the data is large and the relationship between features and the outcome is
straightforward. The coefficients produced by Logistic Regression are easily interpretable, providing clear insights into the
influence of each feature on the probability of an application being classified as malware.

4. Methodology

In our experiment, we utilized the NATICUSdroid framework, which focuses on detecting Android malware by analysing
both native and custom permissions (UCI Machine Learning Repository, n.d.). The dataset comprises a comprehensive
collection of Android applications, both benign and malicious, sourced from multiple reputable repositories.

4.1 Data Sources

Benign Applications: The benign dataset was created using applications available from the Androzoo project database,
which includes metadata for over 10 million Android apps collected from various app markets, including the Google Play
Store. For the benign dataset, 15,000 apps rated as benign by VirusTotal were selected and further pruned to 14,630 apps
based on a target SDK version of API level 23 and above (Mathur et al., 2021). Malicious Applications: The malicious
dataset was sourced from Argus Lab’s Android Malware Database (AMD), containing over 24,500 malware samples
collected between 2010 and 2019. These samples are categorized into 135 varieties across 71 malware families. A random
selection of 14,700 malware samples was made to match the size of the benign dataset (Mathur et al., 2021).

4.2 Data Analysis

The data used in this study was derived from real-world Android applications to investigate the effectiveness of machine
learning models in detecting malware. The dataset included a mixture of both benign and malicious applications, with each
application's permissions. The primary focus was on analyzing the Android permissions data, as permissions often play a
crucial role in distinguishing between benign and malicious behaviors. The data collection process was rigorous, ensuring
that the dataset was comprehensive and representative of the diverse nature of Android applications. Each application in
the dataset was labeled as either benign or malicious based on prior analysis and established benchmarks (Analysis of
Machine Learning Techniques Used in Behavior-Based Malware Detection, 2010).The dataset encompassed various types
of malware, reflecting the wide range of threats that Android devices face in the real world
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Before the analysis, the dataset underwent several pre-processing steps to ensure its quality and suitability for machine
learning tasks. These steps included the identification and handling of missing values, which could otherwise lead to
inaccuracies in the model's predictions (Liu et al., 2020; Mahindru & Sangal, 2020). The data was also examined for class
imbalance, a common issue in cybersecurity datasets—where one class (benign or malicious) might be underrepresented,
potentially skewing the model's learning process (Shao et al., 2021). By addressing these issues early on, the study ensured
that the data used for training and testing the machine learning models was both robust and reliable (Urooj et al., 2022;
Seoungyul, 2019). Furthermore, the dataset was explored to gain insights into the distribution of features, such as the
number and type of permissions requested by each application. This exploratory data analysis helped in identifying key
features that could serve as strong indicators of malicious behavior, thus informing subsequent feature selection and model
building processes (shao, 2021).

4.3 Data Quality Assessment

The data analysis process was conducted meticulously to extract meaningful insights and develop an effective machine
learning model for malware detection in Android devices. The first step involved a thorough Data Quality Assessment,
where the dataset was scrutinized for missing values. It employed to identify any missing data points, ensuring that no
critical information was lost. This step was crucial as missing values could compromise the integrity of the model's
predictions. Following this, the data was checked for balance across classes (benign vs. malicious), as class imbalance
could lead to biased model performance. Techniques such as data resampling were considered to address any identified
imbalances, and the results were visualized to confirm the effectiveness of these measures (Metaplane, n.d.).

5. Analysis Techniques
5.1 Feature Analysis

The Feature Analysis phase was a critical component of the study, serving as the foundation for understanding the predictive
power of the various features within the dataset. This phase was particularly focused on examining the Android permissions
associated with each application, as these permissions are key indicators of an application's behavior and intent. Android
permissions govern what an application is allowed to do on a device, such as accessing the camera, reading contacts, or
sending SMS messages. As such, they provide valuable insights into whether an application is functioning within normal
parameters or exhibiting potentially malicious behavior (Shatnawi et al., 2022).

To systematically evaluate the importance of each permission, the study employed a range of statistical and analytical
methods. One of the primary objectives was to quantify the significance of each permission in relation to its ability to
distinguish between benign and malicious applications. This involved calculating various statistical measures, such as
feature importance scores, which helped to rank the permissions based on their contribution to the classification task.
Technigues such as ANOVA (Analysis of Variance) and Chi-Square tests were used to determine the relationship between
each permission and the target variable (benign vs. malicious), thereby identifying the most discriminative features. These
patterns were crucial in developing a targeted approach to feature selection. By identifying which top 5 permissions were
more commonly associated with malicious behavior, the study was able to prioritize these features in the model-building
process. This not only enhanced the efficiency of the model by reducing the feature space but also improved its
interpretability, as the selected features were directly linked to specific behaviors that are characteristic of malware.
Ultimately, the Feature Analysis phase provided the groundwork for building a robust and reliable machine learning model.
By focusing on the most informative and relevant permissions, the study ensured that the model was both effective and
efficient, capable of accurately distinguishing between benign and malicious applications with minimal computational
overhead. This thorough and detailed analysis of features not only improved the model's performance but also contributed
to the broader understanding of how Android permissions can be used as a powerful tool in malware detection. Below the
Figure 1 shows the top 5 features in Naticusdroid Dataset:
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Top 5 Features by ANOVA F-value

android.permission.RECEIVE_BOOT_COMPLETED -

com.google.android.c2dm.permission.RECEIVE 4

Feature

com.android.launcher.permission.INSTALL_SHORTCUT -

android.permission.ACCESS_COARSE_LOCATION -

0 5000 10000 15000 20000 25000 30000
Score

Figure 1: Top 5 features of Permission by ANOVA f value

5.2 Correlation Analysis

Correlation Analysis played a critical role in this study understanding the intricate relationships between the various
features within the dataset. This step was essential not only for gaining insights into how different features interacted with
one another but also for identifying potential issues such as multicollinearity, which could significantly impact the model's
performance. To begin with, a correlation matrix was generated, which provided a visual and numerical representation of
the correlation coefficients between pairs of features. These coefficients, ranging from -1 to 1, indicated the strength and
direction of the linear relationship between the features. A coefficient close to 1 or -1 suggested a strong positive or negative
correlation, respectively, while a coefficient near 0 indicated little to no linear relationship between the features.

O 5 10 15 20 25 30 35 40 45 50 5
- 1.0

Figure 2: Correlation Matrix
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Figure 2 the correlation matrix, the dark diagonal line from the top left to the bottom right indicates a perfect correlation of
1 between every feature, representing an ideal scenario where each feature is perfectly correlated with itself. The color
gradient varies from light purple, signifying weaker or negative correlations, to deep purple, indicating stronger positive
correlations. Specifically, correlations near zero, depicted by white or light purple, suggest minimal or non-existent linear
relationships between variables, while correlations near 1 or -1, shown by darker purple, reflect significant positive or
negative trends. Off-diagonal elements highlight the correlation rates among different features, with darker squares
indicating stronger connections—whether positive or negative—between the related features, and lighter squares
representing weaker relationships.

5.3 Permission Management

In the context of Android malware detection, permissions play a crucial role in understanding the potential security risks
posed by applications. Android’s permission-based security model is designed to regulate access to sensitive device features
and user data, granting or restricting application permissions based on user approval. Permissions declared in an app’s
AndroidManifest.xml file determine what resources the app can access, such as the camera, GPS, contacts, and network
state (10). While this system is intended to safeguard user privacy and device integrity, it also becomes a focal point for
malicious actors who craft malware to exploit these permissions (11). Malware developers often request excessive or
unnecessary permissions, which may seem benign at first glance but can lead to significant security breaches (8). For
instance, permissions like READ_SMS, ACCESS_FINE_LOCATION, and WRITE_EXTERNAL_STORAGE are often
exploited by malware to access sensitive user data, track user location, and store malicious payloads4. The presence of such
permissions in an app that does not require them for its core functionality can be a strong indicator of malicious intent (11).
The NATICUSdroid dataset, a central focus of this study, specifically examines both native and custom permissions
declared by Android apps to detect and classify malware. Native permissions are those built into the Android operating
system, while custom permissions are defined by app developers to access specific APIs or hardware resources that are not
covered by the standard Android permissions. The combination of these permissions offers a rich feature set for machine
learning models, enabling them to differentiate between benign and malicious applications with greater accuracy.

The study utilizes a dataset comprising over 29,000 Android apps, including both benign and malicious samples, collected
over nearly a decade. By analyzing the declared permissions in these apps, the study identifies which permissions are most
frequently associated with malware. For example, in figure 3 permissions like “INTERNET  and
"ACCESS_NETWORK_STATE" are common across many apps, but their combination With permissions such as
"READ_PHONE_STATE" or '/RECEIVE_BOOT_COMPLETED" in the same app might indicate malicious activity, as
these combinations are often used by malware to communicate with command-and-control servers or persist after a device
reboot(9). The machine learning models developed in this study, including Random Forest, Decision Tree, XGBoost, and
Support Vector Machine, are trained to recognize these patterns of permission usage. Feature selection techniques, such as
frequency analysis and backward elimination, are employed to refine the set of permissions used by the models, ensuring
that only the most relevant features contribute to the final classification. This process significantly enhances the model's
ability to detect malware with high accuracy and low false-positive rates.

Ultimately, the permission-based approach to Android malware detection as implemented in NATICUSdroid underscores
the importance of granular analysis of app permissions. By focusing on the permissions that apps request, the study not
only improves malware detection rates but also provides insights into how malware evolves to exploit the Android
permission model. This approach is critical for developing adaptive and robust security solutions capable of keeping pace
with the rapidly changing landscape of mobile threats.
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Figure 3. Permission Importance in NaticusDroid Dataset

5.4 Pre-processing analysis

In this study, preprocessing the dataset is a critical step that ensures the data is suitable for machine learning models. Given
the nature of our dataset, which involves analyzing permissions from Android applications, it is essential to perform
thorough pre-processing to enhance the quality of the data and improve the model's performance. The study is structured
into several phases: (1) Data Analysis, (2) Data Preprocessing, (3) Data Splitting, and (4) Classification using various
machine learning classifiers.

Preprocessing Steps:

1. Handling Missing Values

The initial phase of our preprocessing pipeline focused on addressing the missing values within our dataset, which could
otherwise skew the machine learning model's training process. To ensure the integrity of the dataset, we systematically
identified and removed records with null values in essential features, particularly those related to application permissions

(12). This rigorous approach was critical in maintaining the completeness of the dataset, thereby ensuring that the models
were trained on accurate and reliable data. Figure 4 shows the null value of the dataset.

android.permission.GET ACCOUNTS com.sonyericsson.home.permission.BROADCAST BADGE android.permission.READ_PROFILE android.

0 0 0 0
1 0 0 0
2 0 0 0

Figure 4. Null Value
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2. Balancing the Dataset

A significant challenge in malware detection datasets is the imbalance between benign and malicious samples in our dataset,
which can lead to a model biased towards the majority class, thereby compromising its ability to detect the minority class
effectively (13). To counter this, we employed the Synthetic Minority Over-sampling Technique (SMOTE) to generate
synthetic samples for the minority class (malicious apps), thereby achieving a balanced dataset. This balancing step was
essential to ensure that the classifiers could learn to detect malware accurately, without being unduly biased towards benign
applications. Figure 5 shows the dataset is well balanced.

14000

12000

10000 -

8000 A

count

6000 -

4000 -

2000 -

Result

Figure 5. Data Balance

3. Data Splitting

In this section, the development and evaluation of our machine learning models for malware detection, the data splitting
process is of paramount importance. The approach taken in splitting the dataset can significantly influence the performance
and generalizability of the model. This study undertakes a comprehensive evaluation of various data splitting strategies to
determine the most effective method for training and testing the machine learning models (14). The primary objective is to
ensure that the model learns from one portion of the data (training set) and is then evaluated on another portion (testing set)
to assess its predictive accuracy on unseen data. This helps to prevent overfitting, where the model performs well on the
training data but fails to generalize to new data (15).

Available Data

A

Training Testing

Figure 6. Holdout method

The Holdout Method is one of the most fundamental techniques used for splitting a dataset in machine learning. The essence
of this method is to divide the entire dataset into two distinct subsets: one used for training the model (training set) and the
other used for evaluating its performance (testing set). This process is crucial in machine learning because it allows for an
unbiased assessment of how the model will perform on new, unseen data, simulating real-world scenarios (16). The holdout
method typically follows these steps:

338



Journal of Cyber Security and Risk Auditing Vol.2025, No.4 ISSN: 3079-5354 STR [ ]

Step 1: Dataset Division: The first step in the holdout method involves dividing the dataset into two parts. The division is
usually done in a specific ratio, commonly 70-30 or 80-20, where 70% or 80% of the data is allocated for training, and the
remaining 30% or 20% is reserved for testing. The choice of ratio can vary based on the size of the dataset and the specific
requirements of the task at hand.

Step 2: Training the Model: Once the dataset is split, the larger portion (training set) is used to train the machine learning
model. During this phase, the model learns the underlying patterns and relationships in the data. The objective is to adjust
the model’s parameters to minimize errors and improve its predictive accuracy.

Step 3: Testing the Model: After the model is trained, its performance is evaluated on the testing set. This set of data was
not seen by the model during training, providing an unbiased evaluation of the model’s ability to generalize to new data.
The testing phase generates performance metrics such as accuracy, precision, recall, and F1-score, which are crucial for
assessing the model's effectiveness. The holdout method is a popular choice for our initial model evaluation due to its
simplicity and ease of implementation, particularly when working with large datasets. It is straightforward to understand
and requires minimal computation, making it much less complex compared to methods like cross-validation (L, 2023).
This approach involves a single split of the data, which significantly reduces computational costs and speeds up the
evaluation process, making it ideal for situations for our comparative analysis where quick assessments are necessary.
Additionally, the holdout method provides a quick baseline estimate of model performance, which can be particularly
useful during the early stages of model development to guide further refinements.

6. Result and Analysis
6.1 Measurement Metrics:

In the field of machine learning, measurement metrics are essential tools that provide quantitative evaluations of model
performance. These metrics serve as the foundation for comparing, optimizing, and validating models, ensuring that they
perform effectively on specific tasks. The choice of metrics depends on the nature of the problem, the type of data, and the
specific goals of the machine learning model. Below, we discuss some of the most commonly used measurement metrics
in machine learning, particularly in the context of classification tasks (17). Accuracy (AC): Accuracy represents the
proportion of correct predictions out of the total number of predictions made by the classifier (17).

TP+TN

Eqg (1
Total ¢ (D

Accuracy =

Precision (P): Precision is the proportion of correctly predicted positive cases among all cases that were predicted as
positive (17).

Precisi e Eq (2
recision = TP T FP q (2)

Recall (True Positive Rate, TP): Recall is the proportion of actual positive cases that were correctly identified by the
classifier (17).

TP
TP+FN

Recall = Eq (3)

F1-Score (F-Measure): The F1-Score is the weighted average of Precision (P) and Recall (True Positive Rate, TP),
providing a balance between these two metrics (17).

F1s _ 2 * Precision * Recall Ea (4
core = Precision + Recall q (%)

The ROC Curve is a graphical representation used to summarize the performance of a classifier across all possible
thresholds. It is generated by plotting the True Positive (TP) Rate on the Y -axis against the False Positive (FP) Rate on the
X-axis (17).
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6.2 Performance Result

This section evaluates the performance of four different machine learning models, Random Forest (RF), XGBoost, Support
Vector Machine (SVM), and Logistic Regression—using various metrics such as Accuracy, Precision, Recall, F1-Score,
and ROC-AUC. These metrics provide insights into the models' ability to classify cases accurately, predict positive cases
reliably, balance between precision and recall, and overall discriminative power.

Table 2. Performance of Various Models Based on Train and Test Split 90-10

CLASSIFIER ACCURACY PRECISION RECALL Fi- AUC-ROC SCORE
SCORE

RF 0.96 0.96 0.96 0.96 0.96

XGBOOST 0.96 0.96 0.96 0.96 0.96

SVM 0.95 0.95 0.95 0.95 0.95

LOGISTIC 0.91 0.91 0.91 0.91 0.91

REGRESSION

Table 3. Performance of Various Models Based on Train and Test Split 80-20

Classifier Accuracy Precision Recall Fl-score  AUC-ROC Score
RF 0.94 0.94 0.94 0.94 0.94
Xgboost 0.95 0.95 0.95 0.95 0.95
SVM 0.94 0.94 0.94 0.94 0.94
Logistic Regression 0.91 0.90 0.90 0.90 0.90

Table 4. Performance of Various Models Based on Train and Test Split 70-30

Classifier Accuracy Precision Recall Fl-score  AUC-ROC Score
RF 0.93 0.93 0.93 0.93 0.93
Xgboost 0.95 0.93 0.95 0.95 0.95
SVM 0.94 0.94 0.94 0.94 0.94
Logistic Regression 0.90 0.90 0.90 0.90 0.90

Table 4. Performance of VVarious Models Based on Train and Test Split 60-40

Classifier Accuracy Precision Recall Fl-score  AUC-ROC Score

RF 0.93 0.93 0.93 0.93 0.93
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Xghoost 0.93 0.93 0.93 0.93 0.93
SVM 0.92 0.93 0.93 0.93 0.91
Logistic Regression 0.90 0.90 0.90 0.90 0.90
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Figure 7. Findings of Accuracy

In the Figure 7, evaluation based on Eq 1, the Random Forest (RF) model consistently demonstrated high accuracy across
all training sizes, with only a slight reduction as the training size decreased, indicating its robustness and ability to
generalize well even with smaller training sets. XGBoost showed excellent performance, maintaining high accuracy,
particularly when trained on 90% and 80% of the dataset, which underscores its efficiency in handling large datasets. The
Support Vector Machine (SVM) model exhibited stable accuracy across different training sizes, suggesting a strong
generalization ability. In contrast, Logistic Regression had the lowest accuracy among the models, indicating potential
difficulties in capturing complex patterns in the data.
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Figure 8. Findings of Precision

In the Figure 8, evaluation of models based on Eq 2, Random Forest (RF) displayed high precision, especially when the
training size was 90%, though its precision slightly declined with smaller training sizes. XGBoost maintained consistently
good precision across all training sizes, indicating its robustness in accurately predicting true positives. The Support Vector
Machine (SVM) also consistently achieved high precision, demonstrating its effectiveness in minimizing false positives.
In contrast, Logistic Regression exhibited lower precision, suggesting a higher likelihood of false positives compared to
the other models.
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Figure 9. Findings of Recall
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In Figure 9, the evaluation of models based on Eq 3, Random Forest (RF) achieved a high recall rate, indicating its
effectiveness in accurately identifying true positive cases. XGBoost consistently demonstrated exceptional recall across
different training sizes, further highlighting its capability in effectively detecting true positives. The Support Vector
Machine (SVM) maintained consistent recall, accurately detecting true positives across various training sizes as well. In
contrast, Logistic Regression had a lower recall, suggesting it missed a higher number of true positives compared to the
other models.

1 000 Model F1-Score at Different Training Sizes
EEN Train Size 90%
N Train Size 80%
0.975 1 N Train Size 70%
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@
=
8
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Figure 10. Findings of F1-score

In the figure 10, evaluation of models based on the Eq 4, Random Forest (RF) exhibited a high F1-Score, demonstrating
its ability to effectively balance precision and recall, thereby accurately identifying true positives while minimizing false
positives. XGBoost consistently achieved high F1-Score values across different training sizes, reflecting its efficiency in
maintaining this balance. The Support Vector Machine (SVM) also showed robust and consistent F1-Scores, indicating its
strong capacity to uphold a trade-off between precision and recall. In contrast, Logistic Regression had a lower F1-Score,
suggesting difficulties in achieving a balance between precision and recall, which resulted in a higher occurrence of both
false positives and false negatives.

343



Journal of Cyber Security and Risk Auditing Vol.2025, No.4 ISSN: 3079-5354 STH [ ]

Model ROC-AUC Score at Different Training Sizes
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Figure 11. Findings of ROC-AUC

In Figure 11 our evaluation of model performance using the ROC-AUC metric, Random Forest (RF) exhibited a high AUC,
indicating its strong ability to effectively distinguish between different classes. XGBoost consistently maintained a high
ROC-AUC score across all training sizes, underscoring its superior performance in class separation. Similarly, the Support
Vector Machine (SVM) demonstrated a consistent ROC-AUC, reflecting a strong ability to differentiate between classes.
In contrast, Logistic Regression showed a lower ROC-AUC, indicating a weaker discriminative ability compared to the
other models.

7. Discussion

Based on a comprehensive evaluation across multiple performance metrics—Accuracy, Precision, Recall, F1-Score, and
ROC-AUC—XGBoost has unequivocally emerged as the top-performing model in this study. The model consistently
delivered exceptional results across all metrics and training sizes, underscoring its robustness, reliability, and efficiency in
handling the complexities of the dataset.

Accuracy: XGBoost maintained consistently high accuracy levels, even as the size of the training data varied. This indicates
that the model is highly effective at correctly classifying instances of both benign and malicious applications. The model's
ability to achieve near-perfect accuracy with both larger and smaller training sets is particularly noteworthy, as it suggests
that XGBoost is capable of generalizing well from the training data to unseen data, minimizing both false positives and
false negatives.

Precision: The model's precision scores were consistently high across all training sizes, demonstrating XGBoost's superior
ability to correctly identify true positive instances while minimizing the occurrence of false positives. High precision is
critical in the context of malware detection, where the cost of false positives can be significant, potentially leading to
unnecessary actions such as blocking legitimate applications.

Recall: XGBoost also excelled in recall, consistently identifying a high proportion of true positive cases across all training
sizes. High recall is essential in malware detection, as it ensures that the model does not miss potential threats. The ability
of XGBoost to maintain high recall even with smaller training datasets indicates its effectiveness in detecting a wide range
of malware, including less common or more sophisticated threats.
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F1-Score: The F1-Score, which balances precision and recall, further highlighted XGBoost's superiority. The model
achieved high F1-Scores across all training sizes, demonstrating its ability to effectively balance the trade-offs between
precision and recall. This balance is particularly important in malware detection, where both high precision (to avoid false
positives) and high recall (to detect as many true positives as possible) are crucial.

ROC-AUC: XGBoost's ROC-AUC scores were consistently high, indicating excellent discriminatory power between
benign and malicious instances. The ROC-AUC metric is particularly useful for evaluating the model's performance across
different threshold settings, and XGBoost's strong performance in this area suggests that it can be fine-tuned effectively to
optimize detection based on specific operational requirements.

Overall, XGBoost's performance across these critical metrics highlights its suitability as a leading model for Android
malware detection. Its consistent ability to deliver high accuracy, precision, recall, F1-Score, and ROC-AUC across various
training sizes demonstrates that it is not only robust and reliable but also highly adaptable to different data conditions. This
adaptability is crucial for real-world applications, where the volume and characteristics of data can vary significantly.

8. Conclusion

In conclusion, XGBoost has proven to be the most effective model for Android malware detection, outperforming other
machine learning models across a comprehensive range of performance metrics, including Accuracy, Precision, Recall, F1-
Score, and ROC-AUC. Its consistent high performance across various training sizes highlights its robustness and reliability,
making it highly adaptable to different data conditions and operational environments. The model's ability to maintain high
accuracy while minimizing both false positives and false negatives is particularly significant, as it ensures reliable detection
of both benign and malicious applications. The high precision and recall rates further demonstrate XGBoost's efficiency in
correctly identifying true positives while reducing the risk of false positives, a crucial factor in the context of malware
detection. Moreover, the superior F1-Score underscores the model's capability to balance precision and recall effectively,
providing a comprehensive measure of its overall performance. Finally, the strong ROC-AUC scores reflect XGBoost's
excellent discriminatory power, enabling it to distinguish effectively between benign and malicious instances across
different threshold settings. This flexibility makes XGBoost a particularly valuable tool in real-world cybersecurity
applications, where the ability to fine-tune detection capabilities based on specific operational needs is essential. Given
these findings, XGBoost stands out as the optimal choice for Android malware detection, offering a powerful combination
of accuracy, reliability, and adaptability that is well-suited to the evolving landscape of cybersecurity threats.
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