

Journal of Cyber Security and Risk Auditing Vol.2026, No.1 ISSN: 3079-5354

38

Mitigating Information Leakage Risks in Secure Multiparty Computation through

Function Hiding

Udit Mamodiya1*, Vandana Ahuja2, Indra Kishor3, Amer Alqutaish4*, Rami Shehab5 and Mansour Obeidat6

1Associate Professor, Faculty of Engineering and Technology, Poornima University, Jaipur 303905, Rajasthan, India
2 Associate Professor, Department of CSE, MMEC, Maharishi Markandeswar Deemed to be University, Mullana, Ambala,

Haryana, India
3 Assistant Prof., Dept. of CSE, Poornima Institute of Engineering and Technology, Jaipur 302022, Rajasthan, India
4Deanship of Development and Quality Assurance, King Faisal University, 31982, Al-Ahsa, Saudi Arabia
5Vice-Presidency for Postgraduate Studies and Scientific Research, King Faisal University, 31982, Al-Ahsa, Saudi Arabia
6Applied College, King Faisal University, Al-Ahsa, Saudi Arabia

A R T I C L E I N F O

Article History

Received: 07-12-2025

Revised: 17-01-2026

Accepted: 25-01-2026

Published: 26-01-2026

Vol.2026, No.1

DOI:

*Corresponding author.

Email:
assoc.dean_research

@poornima.edu.in
and

aalqutish@kfu.edu.sa

Orcid:

https://orcid.org/0000-

0002-8022-4252

This is an open access article

under the CC BY 4.0 license

(http://creativecommons.or

g/licenses/by/4.0/).

Published by STAP

Publisher.

A B S T R A C T

Secure multiparty computation (SMPC) allows a joint computation on private data, but the majority of

the existing protocols assume implicitly that the computation being performed is public and non-

sensitive. In practice, though, computation logic frequently incorporates proprietary strategy or sensitive

rule of decision, and its exposures constitute a significant though neglected leak of information. The

prevailing SMPC models can mainly provide input confidentiality and accuracy, but the protocol level

leakage due to observable protocol behavior is not well tackled. This paper attempts to fill this gap by

introducing a (Function-Hiding Secure Multiparty Computation) FH-SMPC framework modifying the

SMPC workflow to incorporate encapsulation of functions and regular patterns of execution directly.

The suggested design hides structural and semantic attributes of the considered function and maintains

the correctness, scalability, and compatibility with the conventional SMPC primitives. An explicit

security analysis provides indistinguishability of functions along with classical input privacy.

Experimental evaluation shows that FH-SMPC reduces transcript-based function distinguishability by

over 85%, achieving an average divergence of 0.028 compared to 0.214 for baseline SMPC, with an

execution latency increase limited to approximately 12% and no asymptotic growth in communication

overhead. By treating computation logic as a confidential asset, FH-SMPC advances secure collaborative

computation and provides a practical foundation for privacy-sensitive applications in cloud analytics and

distributed decision systems.

Keywords: Secure Multiparty Computation, Function Hiding, Information Leakage, Cryptographic

Protocols, Privacy-Preserving Computation.

Journal of Cyber Security and Risk Auditing

https://www.jcsra.thestap.com/

How to cite the article

mailto:aalqutish@kfu.edu.sa
https://orcid.org/0000-0002-8022-4252
https://orcid.org/0000-0002-8022-4252
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.jcsra.thestap.com/

Journal of Cyber Security and Risk Auditing Vol.2026, No.1 ISSN: 3079-5354

39

1. Introduction

Secure Multiparty computation (SMPC) has become a paradigm of cryptography to allow collaborative computation of

parties acting in mutual distrust without having to reveal their own inputs. Since its formalization in the late twentieth

century, SMPC has developed as a theoretical framework to a practical instrument in the basis of privacy supporting data

analytics, distributed machine learning, federated optimization, and secure decision-making across organizational borders

[1]. The basic idea behind SMPC is that it allows calculating any arbitrary functions on private data, and ensures that no

party learns anything except as can be deduced by their own contribution and the resulting output. This attribute has made

SMPC to be essential in fields where regulatory authorities, market competitiveness or ethical factors forbid sharing of

raw data.

The security discourse has however evolved beyond classical input privacy as SMPC protocols have evolved and now been

applied to a real world scenario. Modern usages are more and more showing that it is not enough to protect inputs. In most

collaborative environments, the very form of the computation or decision logic or analytical model under consideration is

highly sensitive intellectual property. As an example, proprietary risk-scoring models, strategic allocation functions and

private analytics pipelines may enshrine domain expertise that the participants are either unwilling or incapable of sharing.

The conventional SMPC models though effective in input protection, often assume that the role being calculated is social

and is entirely known by all members [2]. The reason behind this assumption being reasonable and reasonable in the abstract

world of academics however turns out to be a problem in the high-stakes and practical world.

The revelation of functional information presents a low but significant attack surface. Although the inputs are encrypted

and intermediate values masked, the fact that the exact implementation of the function is known can be exploited by the

adversaries to tell sensitive relationships, reverse-engineer the proprietary logic, or correlate the outputs with previously

known structural properties of the computation [3]. Such leakage can be not considered a breach of the formal notion of

SMPC security in an adversarial or semi-honest environment, but can still lead to economic or strategic damage. Function-

level confidentiality has therefore become one of the most important aspects of privacy-preserving computation, albeit

having gone under-discussed.

Function hiding as the concept attempts to overcome this risk by assuring that the parties involved in the initiative do not

know the inner workings or the semantic information about the evaluated function. Rather, parties engage with an abstract

able or obfuscated representation which maintains a model and masks functional purpose. Initial discussions of this

concept have been made in the sense of the evaluation of private functions (PFE) where one party has a private function

and the other parties have private inputs [4]. PFE protocols prove that it is possible to effectively hide functions, but they

are usually based on special constructions, incur a lot of computational cost, or make a restrictive assumption about the

adversarial model. In addition, most approaches to PFE are restricted to Boolean circuits or particular functions classes,

restricting their use to general-purpose SMPC.

In line with these innovations, there is also the topic of functional encryption (FE) as a potent cryptographic primitive that

can disclose only output functions out of encrypted input [5]. FE, by construction, enables a decrypt or to be able to learn

f(x) but nothing more about xxx, when fff is embedded in the decryption key. This treatment of information and

functionality asymmetrically indicates one interesting potentiality: is it possible to have function hiding by storing

functional logic in cryptographic objects instead of putting it on the protocol level? Although FE in itself is theoretically

elegant, it fails to consider the collaborative, multi-party aspect of SMPC, and does not necessarily hide the structure of

functions among all participants in a distributed environment.

A second approach that has been explored is program obfuscation as a method of concealing the logic of computation and

still remaining executable [6]. More precisely, indistinguishability obfuscation (iO) provides good theoretical guarantees,

and ensures that, obfuscated programs do not provide significantly more information than black-box access. But, iO

constructions are still computationally intensive and based on complicated assumptions of hardness and not yet feasible

to large scale applications or applications which are sensitive to latency. Moreover, the direct encoding of obfuscated

programs into the SMPC workflows creates difficulties with regards to the composability, verification, and predictability

of performance.

Consequently, current methods of the function hiding are more likely to examine individual facets of the issue but not

provide a unified approach to it. Others focus on high levels of theoretical guarantees rather than high levels of practicality

Journal of Cyber Security and Risk Auditing Vol.2026, No.1 ISSN: 3079-5354

40

and others focus on efficiency but use constraining assumptions or limited threat models [7]. Function disclosure in the

majority of deployed SMPC systems is still implicitly admitted as a necessary trade-off. This lack of theoretical potential

and real implementation points to the necessity of a systematic reconsideration of the way the issue of the function

confidentiality is addressed in the context of the SMPC protocols.

The issue is even worsened by the increased complexity of the contemporary collaborative computations. In contrast to

the early SMPC application scenarios of simple arithmetic or voting protocols, modern applications are usually

characterized by stratified decision making, adaptive control flow and data-related branching. In this case, divulging the

role may unwillingly divulge the strategic priorities, optimization criteria or acquired model behaviors [8]. Although the

inference attacks might be mitigated with additional information, even the partial information about the computation

graph can be used to carry out the inference in an undesirable way.

The overwhelming opinion of most SMPC security analysis remains on input privacy, correctness and opposition to

malicious deviation. The leakage of the functions is either assumed or not to affect the core security definition [9]. This

dismissal implicitly will leave a blind spot in both the theoretical models and practical implementations. To overcome

this blind spot, a patch will not do but a conceptual expansion of the SMPC security goals to make the hiding of functions

a first-class requirement.

This paper claims that the issue of information leakage in SMPC requires a consistent structure, which combines the

concept of function hiding with the concept of existing multiparty computation. Instead of assuming function

confidentiality as an external augmentation, we suggest introducing it at the core of the computation process by a hybrid

cryptographic design. The main concept is to separate the functional semantics and the execution of the protocols so that

participants can collectively compute the results, without any participant being aware of the underlying logic that was

used to derive these results.

Towards this end we present a functional hiding of SMPC framework based on lightweight functional encryption with

the abstraction of protocol-level structure. The approach proposed does not need one party which owns a function and

restrictive circuit representations as it would be in conventional PFE schemes. Instead, it facilitates joint analysis in the

semi-honest and malicious adversarial settings, as well as being compatible with the usual constructs of SMPC building

blocks including secret sharing and secure reconstruction [10]. Through a well-coordinated representation and invocation

of functional components, the framework reduces leakage at a cost that is prohibitive to computation.

One of the design principles that will be applied to the proposed solution is composability. SMPC deployments in the

modern world are rarely deployed in isolation; they exist as part of larger systems which include authentication, access

control, auditing and adaptive decision-making. Any functional hiding of any functionality will therefore have to coexist

with the existing protocols and security proofs. The suggested architecture is designed in such a manner that it can be

easily extended or scalable with function hiding that can be superimposed on the existing SMPC implementations [11].

Theoretically, the framework builds on the traditional definition of SMPC security by providing the concept of function

indistinguishability as a property. Informally, this guarantees that an adversary, on learning a protocol transcript,

intermediate messages as well as output, will not be able to differentiate between executions of different functions, so

long as the functions yield the same output on the specified inputs [12]. This concept is intuitively consistent with security

models that are simulated and it is possible to reason formally about leakage boundaries.

This work is not only novel in its use of cryptographic construction, but it is also novel in how the operation of hiding

functions is implemented within SMPC. Instead of extensive obfuscation or completely homomorphic assessment, the

new scheme helps use selective disclosure by use of cryptographic encapsulation. This design is a carefully chosen

compromise between the strength of security and computational feasibility, so this technique is applicable to a real-world

implementation setting [13].

1.1 Contributions and Novelty

Unlike the previous works that present function privacy in the limited scope, the paper provides a cohesive treatment that

cuts across threat modeling, protocol and leakage analysis. The framework is measured with respect to representative

attack vectors and it has been shown that the use of function hiding can mitigate inference risk whilst adversaries have

auxiliary information or are colluding inter-phase protocols [14]. Significantly, the analysis shows that one of the

Journal of Cyber Security and Risk Auditing Vol.2026, No.1 ISSN: 3079-5354

41

situations in which traditional SMPC would be formally safe but practically weak by the nature of its design are in need

of the proposed extension.

Overall, the following contributions are made in this work. To start with, it defines the problem of leakage in functions

as a serious and under-researched weakness of current SMPC systems. Second, it suggests a hybrid framework of

functions hiding, which glues well with traditional primitives of SMPC. Third, it makes indistinguishability of functions

in a simulation-based security model formal and offers a rigorous basis of analysis. Lastly, it shows that the hiding of

strong functionality is possible without compromising practicability, thus putting the gap between cryptographic theory

and secure computation in the real world closer [15].

Three main contributions are made in this work. Firstly, it singles out as a specific and practically applicable risk of SMPC

the concept of leakage at the functional level, in addition to the classical emphasis of input and output confidentiality.

Second, it proposes the FH-SMPC framework that implements the encapsulation of functions and repeatable execution

patterns in the SMPC protocol flow to provide the indistinguishability of functions without compromising on correctness

or scalability. Third, it offers formal security analysis and empirical validation that indicate that the proposed design

substantially inhibits transcript based inference and remains practical.

1.2 Positioning with Respect to Prior Work.

The suggested FH-SMPC framework is fundamentally different than the current methods of using predicate functional

encryption (PFE) based, functional encryption (FE) based, and program obfuscation based methods. PFE and FE are

mainly aimed at centralized cryptographic-based environments, where a single evaluator views a limited or secret output

of a function yet they do not consider function privacy in interactive multiparty computation. FH-SMPC, on the other

hand, interoperates with the SMPC protocol flow, so that jointly computing an obscured function by multiple parties can

be performed without each party having to know anything about its structural or semantic characteristics. Likewise,

although obfuscation methods are designed to convert programs into forms that are meaningless to the computer, they are

generally applied to individual code and not distributed-execution transcript-based leakage. The innovation of FH-SMPC

is thus in the indistinguishability of its functionality at the protocol level, as opposed to the use of individual cryptographic

primitives, making computation logic protection in collaborative and distributed systems practicable.

1.3 Research Objectives.

This study will be motivated by the following research questions because the current SMPC protocols exhibit certain

limitations which do not adequately combat the logic of computation:

1. to define formally the function level leakage due to the visible protocol traces and interaction patterns in the multi-party

computation;

2. to come up with an FH-SMPC architecture that introduces the concept of function hiding directly into the SMPC

protocol architecture without sacrificing any correctness or privacy of the input;

3. to achieve security assurances of both semi-honest and malicious adversarial models of function indistinguishability;

and

4. to empirically test the efficacy of the suggested solution to decreasing transcript distinguishability and adversarial

benefit in contrast to baseline SMPC schemes.

This paper will help improve the state of privacy-preserving computation by incorporating function confidentiality as an

aspect of SMPC security. The rest of this paper is organized in the following way. Section 2 operates a literature review

and critical analysis of the available literature on secure multiparty computation, leakage-resilient cryptographic

primitives, and function-hiding techniques in order to identify the conditional limitations that underlie this research.

Section 3 outlines the suggested methodology, which involves the threat model, design principles and the function-hiding

SMPC framework that has been devised to address the risks of information leakage. Section 4 introduces the experimental

setting and findings, which indicate the effectiveness and efficiency of the given approach. Section 5 presents the results

in the context of the already existing work and addresses the issue of security implications, practical concerns, and possible

trade-offs. Lastly, Section 6 wraps up the paper and gives future research directions such as extending to more powerful

adversarial models and real-life implementation conditions.

Journal of Cyber Security and Risk Auditing Vol.2026, No.1 ISSN: 3079-5354

42

2. Literature Review

2.1 Foundations of Secure Multiparty Computation

The study of secure multiparty computation has been growing at a rapid pace in the past twenty years due to the increasing

need to perform joint analytics without jeopardizing the data confidentiality. Initial foundational literature proved the

possibility of collective computation of functions on private inputs with strong cryptographic guarantees where much

attention was paid to correctness and privacy of inputs when adversaries acted semi-honestly and maliciously [16]. These

experiments formed the basis of current SMPC procedures but mostly considered that the role under test was social

knowledge. This assumption seemed plausible at the time, because the majority of target applications incurred consensual

and transparent calculations.

With SMPC approaching a closer to a practical deployment, research on efficiency and scalability issues commenced

later. Secret sharing based and garbled circuit based protocols and homomorphic encryption protocol were also optimized

to minimize the communication rounds, cost of computation, and latency [17]. Although these advances made a significant

improvement, they did not change the security model radically. The function itself was still explicit, described right in

protocol descriptions or circuit descriptions. Therefore, functional disclosure was viewed as a reasonable trade-off, and

not as a possible weakness.

2.2 Function Privacy: PFE, FE, and Obfuscation

In parallel with SMPC evolution, the cryptography community studied the problem of private function evaluation and

made it a separate problem. PFE studies considered situations when one of the parties possesses a clerical role and other

parties deliver inputs, and the aim is to avoid the disclosure of either of the parts [18]. These methods showed that

theoretically function concealment was possible, but the methods could be highly complicated circuit transformations, or

ad hoc assumptions. Besides, the majority of PFE schemes were either less expressive or had overheads that made them

impractical to use in large multiparty environments.

Another view of selective disclosure of information was brought about by functional encryption. With FE schemes, the

decryption keys are associated with particular functions and only authorized computations can be done with encrypted

data [19]. This paradigm provided access control at the fine-grain and also generated the interest in the privacy preserving

analytics. Nonetheless, FE is concerned more with data confidentiality and not the joint calculation between two or more

parties. Incorporating FE into SMPC poses nontrivial threats, such as important management, and also trust, and

consistency with distributed execution models [20]. Due to this reason, FE-based solutions have been kept very abstract

regarding the full-fledged multiparty protocols.

Indistinguishability obfuscation and program obfuscation have also been suggested as a style of hiding computation logic

[21]. Theoretically, obfuscated programs are as revealing of information as black-box access to the functionality. There

were a number of studies that indicated that obfuscation would secure proprietary algorithms in a distributed setting.

However, it is still restricted by expensive computational models, strong hardness assumptions and challenges in

constructing obfuscated programs to interact with interactive protocols [22]. Such constraints have confined the use of

obfuscation to limited or experimental use of the practice of hiding functions.

2.3 Leakage via Execution Traces and Protocol Structure

Recent literature has come to admit that disclosing function structure may give way to indirect information leakage,

despite input privacy being established on paper. Scientists have demonstrated that opponents can use information about

the computation graph, branching logic or parameter dependencies to deduce sensitive properties or strategic purpose

[23]. These attacks tend to be beyond the mainstream SMPC threat models and the inconsistency between formal

definition and actual risk. Systematic solutions are, however, scanty in spite of this realization.

Other works have tried to obscure the details of functions by randomizing the circuit or abstraction to protocol level. The

goals of these methods are to render observed executions less informative by additive noises or variability to the

computation flow [24]. Although these methods may be used to minimize leakage in certain situations, they lack powerful,

demonstrable properties of function indistinguishability. In a great number of cases, even repeated executions or

supporting information can allow enemies still to obtain valuable information about the underlying reasoning.

Journal of Cyber Security and Risk Auditing Vol.2026, No.1 ISSN: 3079-5354

43

2.4 Hardware- and Leakage-Resilient Approaches

SMPC has also been studied together with trusted hardware environments like secure enclaves [25]. These systems seek

to protect computation logic by performing sensitive functions within hardware-secured areas to prevent participants.

Nonetheless, imposing trust in hardware means creating additional vulnerabilities to attack, such as side-channel attacks

and dependency on vendors. Moreover, these solutions might not be satisfactory in environments where it is not always

possible to create hardware trust.

A different line of research has concentrated on leakage-resilient computation, and focused on restricting what can be

learned about the protocol transcripts and side channels [26]. These works present very useful information on how to limit

information exposure, but most of them focus on data leakage and not on the confidentiality of functions. When referred

to, function hiding is usually only seen as a nice-to-have feature, not as a necessity.

Comparative views on SMPC frameworks indicate that a majority of the present systems focus on efficiency, scalability

and resiliency to active adversaries, implicitly believing in the benign nature of disclosed functions [27]. Even sophisticated

protocols that are made to address malicious security will seldom address the role as a secured resource. Such omission is

more problematic in a competitive or a regulated context, where the business logic or decision policies are sensitive in the

form of the encoded functionality.

The gap is starting to be pointed out in recent surveys on privacy-preserving computation. According to authors, the further

SMPC systems should consider the larger concepts of privacy, such as protection of models, algorithms, and the intent of

analysis [28]. These discussions, however, do not go in any further to suggest any concrete and implementable mechanisms.

The literature is therefore the increasing awareness in the absence of converging methodological approaches.

There is limited effort in trying to formalize function privacy in SMPC security definitions. Some theoretical literature has

offered extensions to simulation based security that add function indistinguishability [29]. Although these models are

sometimes promising, they are seldom realized in actual protocols creating a disjuncture between theory and practice. The

only way to fill this gap is to have designs that can be shown to be provably secure and operationally feasible.

2.5 Privacy-Preserving Biometric and IoT Computation

Recent developments in privacy-preserving biometric systems further illustrate the importance of concealing not only

data but also computational intent and access patterns. In particular, privacy-enhanced facial recognition schemes based

on homomorphic encryption enable encrypted-domain feature extraction and matching for IoT environments, thereby

preventing direct disclosure of biometric templates during cloud-based processing. Similarly, hidden facial verification

frameworks combining homomorphic encryption with privacy information retrieval (PIR) aim to prevent servers from

learning which identity or feature index is being queried during verification. Although these approaches are not formulated

within the SMPC paradigm, they demonstrate that practical privacy threats often arise from observable computation and

query behavior rather than raw data leakage alone. These systems therefore provide empirical support for the relevance

of function-level privacy in distributed and cloud-assisted analytics, reinforcing the motivation for function-hiding

mechanisms in collaborative computation settings.

2.6 Summary of Research Gaps

Overall, the available literature shows that there has been significant improvement on the task of securing the inputs and

outputs in multiparty computation yet presents a obvious weakness in the effort to handle the issue of information leakage

on the function level. PFE, functional encryption, obfuscation, and hardware-based isolation are all approaches that provide

a partial solution but do not provide a unified and efficient and generally applicable framework of hiding functions in

SMPC [30]–[35]. This disjointed landscape highlights why there is a need to have in place integrated solutions that present

the concept of functional confidentiality as a first-class security goal and not an exception or an afterthought. The current

work continues based on these insights and suggests a single framework, which incorporates the concept of function hiding

that is directly implemented into the SMPC protocol structure. It attempts to bridge the gap found in previous research by

combining concepts of functional encryption and protocol abstraction, and finding a feasible route to the objective of

leakage-resilient collaborative computation. Solutions based on PFE, functional encryption, obfuscation and hardware-

assisted isolation are all partial solutions, and each one of them lacks a consistent and efficient framework to conceal

Journal of Cyber Security and Risk Auditing Vol.2026, No.1 ISSN: 3079-5354

44

computation logic in interactive SMPC protocols. Besides, recent privacy-conscious biometric and IoT systems

demonstrate that hiding computational intent and access patterns is usually as important as data encryption. Although the

importance of these risks has been increasing, the existing SMPC designs do not consider the considered functionality as a

secret asset. Such a fragmented topography indicates that a combined set of protocol-level solutions is required with the

express aim of achieving function indistinguishability and classical input privacy. The current contribution is based on

these lessons and introduces a combined FH-SMPC architecture that directly incorporates the notion of function hiding

into the SMPC protocol architecture, thus closing the gulf between the theoretical concepts of privacy of functions and

actual collaborative computation.

Table 1. Comparative literature gap analysis highlighting limitations of existing secure multiparty computation and

function-hiding approaches

S.

No.

Refe

renc

e

No.

Title /

Focus

Area

Methodology /

Tools Used

Key

Findings

Limitations / Gaps

Identified

Relevance to the Current

Study

1

S. R.

H.

Najar

kolaei

et al. /

2024 /

[1]

Beyond Yao’s

Millionaires:

Secure Multi-

Party

Computation

of Non-

Polynomial

Functions /

Extending

SMPC

expressiveness

Protocol

design for

evaluating

non-

polynomial

functions;

secure

computation

formalization;

efficiency-

aware

constructions

Demonstrates

that SMPC can

move beyond

standard

polynomial/arith

metic

assumptions and

still remain

secure and

correct for richer

function classes

Focus remains on

correctness and

feasibility; function

visibility is not

treated as a leakage

vector, so

proprietary logic

can still be exposed

through the public

function description

Helps motivate that modern

SMPC supports complex

functions—precisely the

setting where function

disclosure becomes costly,

strengthening the need for

function hiding in our work

2

C.

Haza

y et

al. /

2024 /

[7]

Protecting

Distributed

Primitives

Against

Leakage:

Equivocal

Secret Sharing

and More /

Leakage

resilience in

distributed

primitives

Leakage-

resilient secret

sharing;

equivocation

techniques;

formal leakage

models and

security

arguments

Provides

rigorous methods

to harden

distributed

primitives

against side

leakage,

supporting more

robust

composability

Primarily addresses

leakage from

shares/primitive

exposure; does not

directly model

“function leakage”

(i.e., leakage of

what is being

computed) as a

first-class goal

Supplies provides

conceptual and technical

foundations on leakage-

conscious SMPC building

blocks, which we expand to

the level of functional

discretion

3

R. R.

Cohe

n et

al. /

(book

chapt

er) /

[9]

SMPC with

Identifiable

Abort via

Vindicating

Release /

Accountability

and fairness in

SMPC

Protocols that

detect/attribute

aborts;

controlled

release

mechanisms;

stronger

execution

integrity

Shows how

SMPC can

incorporate

accountability

and controlled

abort handling,

reducing denial-

style disruptions

The focus is abort

attribution, not

secrecy of

computation logic;

participants still

learn the function,

and transcript

structure may still

reveal logic

Relevant in the sense that

function hiding should

coexist with realistic SMPC

concerns (abort/fairness);

our work focuses on the

dangers of function leakage

and is consistent with the

existence of sound

execution models

4

Q. Ye

and B.

Dela

ware /

2024 /

[16]

Taypsi: Static

Enforcement of

Privacy

Policies for

Policy-

Agnostic

Oblivious

Static analysis

+ oblivious

computation

enforcement;

program-level

privacy

constraints;

Treats privacy as

a programmable

constraint and

enforces

obliviousness

properties at the

Emphasizes policy

enforcement and

obliviousness, yet

function

confidentiality is

not the core

objective; the

Closely spiritually

impregnated: it

demonstrates that privacy

can be implemented in the

programming layer--our

paper equally insists that the

hiding of functions should

Journal of Cyber Security and Risk Auditing Vol.2026, No.1 ISSN: 3079-5354

45

Computation /

Policy-driven

oblivious

computation

compilation/ve

rification style

tooling

computation

level

policy/structure

may still hint at

computational

intent

be engineered in to SMPC

rather than placed on a case-

by-case basis.

5

Y. Li

et al. /

2025 /

[20]

Function-

Hiding Multi-

Client Inner-

Product

Functional

Encryption (No

Pairings) /

Function-

hiding FE

Pairing-free

FE

constructions;

multi-client

setting; large-

space support;

formal

indistinguisha

bility notions

Achieves

function-hiding

FE under

efficient design

choices, suitable

for large domains

and multi-client

environments

It is FE-focused, not

a full SMPC

protocol; does not

address interactive

multiparty

transcripts,

collusion patterns,

or SMPC

reconstruction

leakage

Extremely central: offers

tangible cryptographic path

to conceal function

semantics, which our SMPC

framework can use to

minimize information

disclosure concerning logic

implemented

6

V. R.

Cada

mbe

et al. /

2023 /

[22]

Differentially

Private Secure

Multiplication:

Hiding

Information in

the Rubble of

Noise / Noise-

based hiding in

secure

arithmetic

Differential

privacy

integrated with

secure

multiplication;

information-

hiding via

controlled

noise;

theoretical

bounds

Illustrates that

privacy can be

strengthened by

mixing

cryptographic

security with

statistical hiding

Noise can distort

utility; it targets

value leakage more

than function

secrecy; does not

guarantee function

indistinguishability

in SMPC transcripts

Our work explains the

reason why, in addition to

randomized outputs,

structural secrecy is

required by the function

hiding

7

Y.

Luo et

al. /

2024 /

[28]

Cloud-SMPC:

Two-Round

SMPC based

on LWE /

Practical

SMPC

efficiency and

assumptions

Two-round

SMPC design;

LWE-based

security;

cloud-oriented

deployment

viewpoint

Shows modern

SMPC can be

made round-

efficient and

suitable for cloud

settings

Efficiency-centric;

function is assumed

public, and the

protocol’s structure

may leak

computation intent

even when inputs

are protected

Closely connected to the

deployment: the hiding of

functions should not ruin

usefulness. This paper

inspires our intention to

introduce layers of

functionality without

violating the performance

requirement

8

Y. Bai

et al. /

2024 /

[30]

Secure

Network

Function

Computation:

Function-

Security /

Function-

security as a

formal goal

Defines and

studies

“function-

security” in

network

computation;

theoretical

security

definitions and

bounds

Explicitly

elevates the

function as a

protected object,

offering a formal

lens for function

confidentiality

Primarily in

network function

computation

setting; translation

to general SMPC

workflows and

protocol transcripts

needs additional

design work

One of the most

conceptually parallel

sources: is in agreement

with our basic thesis that the

hiding of functions must be

formalized, and then

realized in SMPC by

leakage conscious

mechanisms

Table 1 shows a narrow gap analysis of selected and closely related works in the area of secure multiparty computation,

leakage-resilient cryptography primitives, and function-hiding. Although earlier literature reveals considerable progress

in the expressiveness of SMPC, efficiency, and resistance to adversarial actions [1], [7], [9], [28], the majority of the

frameworks still assume that the evaluated function is publicly accessible, thereby not considering the leakage of functions

at the information level. Similar work on functional encryption and function-security models develops powerful

theoretical frameworks of concealing computation logic [20], [30], but such solutions are not often incorporated in

interactive SMPC protocols. This analysis has identified a gap in the research: lack of a single, practical SMPC framework,

which explicitly reduces information leakage due to the disclosure of functions, but does not compromise protocol

efficiency and composability, which is specifically handled in the current study.

Journal of Cyber Security and Risk Auditing Vol.2026, No.1 ISSN: 3079-5354

46

3. Methodology

In this section, the researcher outlines the proposed methodological framework that can be used to reduce information

leakage in the context of secure multiparty computation as a result of information disclosure during functions. The

methodology has been developed following two principles, namely, to go beyond standard SMPC security assurances of

input privacy to provide explicit confidentiality at the level of functionality; and to make the resultant framework practical,

modular and reproducible. The section starts with the description of the system design goals and slowly develops the

threat model, problem formulation, and algorithmic foundations, which are the basis of the presented approach of

function-hiding SMPC.

3.1 System Overview and Design Objectives

The suggested methodology presents Function-Hiding Secure Multiparty Computation (FH-SMPC) scheme that allows

joint computation and at the same time safeguard both private inputs and privacy of computation protocol itself. Unlike

the traditional SMPC models where the value of the evaluated function is presupposed publicly known, the FH- SMPC

model considers the function as a valuable asset, the disclosure of which can result in indirect inference, strategic leakage,

or revealing of proprietary decision-making.

On a high level, the system is a set of several distrustful parties that possess their own input data, which are private and

obscure, and who strive to compute some target function collectively without exposing their inputs or the functional form

in which the computation is to be done. As depicted in Figure 1, the framework proposes a special purpose, encapsulation

layer, which abstracts and cryptographically shields the function before secure evaluation. This encapsulation guarantees

that parties dealing with it are only involved in interchange with an encoded version of the functionality, and not with its

logical form.

Figure 1. High-level architecture of the proposed function-hiding secure multiparty computation (FH-SMPC)

framework.

In Figure 1, the architectural movement shows the distinction between semantics of functionality and semantics of

execution. The preparation phase is performed first on the function owner (or agreed-upon computation logic) whereby

the encapsulation of the function is done by using cryptographic abstractions. This secure representation is then used by

standard SMPC components, which include sharing of secure inputs, distributed evaluation and reconstruction of the

results. During the execution of protocols, middle-level messages or visible transcripts do not reveal any significant

information regarding the internal structure of the functionality.

Journal of Cyber Security and Risk Auditing Vol.2026, No.1 ISSN: 3079-5354

47

The FH-SMPC framework design has three design objectives. One, it maintains the classical properties of SMPC (such

as correctness and input privacy) with semi-honest and malicious adversarial models. Second, it formally introduces the

concept of indistinguishability of functions as the security goal, that is, the fact that adversaries cannot tell between two

different functions that generate the same output given the same input. Third, the framework focuses on deployability as

it is compatible with common SMPC primitives and does not rely on any unrealistic assumptions or heavy cryptographic

schemes.

In the semi-honest adversarial model, corrupted parties are assumed to follow the prescribed protocol steps correctly but

may attempt to infer information about the evaluated function from their local views and observed transcripts. For

example, a semi-honest party may analyze the sequence of messages, intermediate share distributions, or execution timing

patterns to distinguish whether the computation corresponds to a threshold function, a polynomial evaluation, or a

conditional decision rule. Such attacks rely on passive observation and statistical inference rather than protocol deviation.

In contrast, a malicious adversary is allowed to deviate arbitrarily from the protocol in order to amplify function-level

leakage or disrupt the intended hiding mechanism. Examples of representative attacks in this context are injecting bad

shares to cause alternative lines of execution and selective aborting the protocol to correlate termination behavior with

shape of functions, and manipulation of interaction patterns to cause distinguishable transcript signatures. These active

strategies aim to exploit structural dependencies between protocol behavior and the concealed function. The FH-SMPC

framework is designed to mitigate both passive inference by semi-honest adversaries and adaptive manipulation by

malicious parties through function encapsulation and uniform execution patterns.

3.2 Threat Model and Adversarial Assumptions

The security of the proposed Function-Hiding Secure Multiparty Computation (FH-SMPC) framework is examined in the

light of a transparent and broad threat model that includes a traditional input leakage as well as a functional leakage of

information. Contrasting the classical SMPC formulations that assume that the evaluated function is of a public and non-

sensitive nature, this work considers the actual value of the function as secret and may be exploitative in case it is revealed

during the execution of protocols. In the proposed FH-SMPC framework, function encapsulation is performed in a

distributed manner rather than by a single trusted party. Each participant locally applies the encapsulation transformation

to its designated share of the function representation using the function security compiler and randomization module. As

a result, no individual party obtains a complete or explicit description of the encapsulated function f~(⋅). This distributed

encapsulation process prevents concentration of knowledge about the computation logic at any single point and aligns

with the threat model in which all parties are considered potentially curious or adversarial.

3.2.1 System Setting and Adversary Scope

Suppose there are n mutually distrustful parties denoted by, P=P1,P2,…,Pn and each party Pf has an input which is non-

publicly known, xiномXi. The strategic goal of the parties is to collectively calculate a function on their shared inputs

and maintain input privacy and function privacy. The target computer is defined like this (1).

𝑦 = 𝑓(𝑥1, 𝑥2, … , 𝑥𝑛) ⋯ (1)

In which f(.) is the function that needs to be jointly evaluated by the participating parties, and y represents the common

output of the computation.

In this case, xi represents the individual input of party Pi and Xi represents the domain of its input. The opponent A is

thought to be probabilistic poly-time (PPT), having complete access to protocol messages and the capacity to corrupt a

group of the participating parties. It does not make any assumptions about a trusted third party at any point during the

protocol.

3.2.2 Adversarial Behavior Models

Two normative adversarial behaviour are taken:

 1 .Semi-honest adversaries, which adhere to the protocol specification but seek to extract extra information by all

information they observe when running.

Journal of Cyber Security and Risk Auditing Vol.2026, No.1 ISSN: 3079-5354

48

2. Malicious attackers, who can arbitrarily noncompliantly follow the protocol, inject corrupted messages, adaptively

decide inputs, or seek to control protocol execution to steal unauthorized information.

In both cases, the adversary may collude with up to t<n parties and aggregate their local views, including randomness and

message histories.

3.2.3 Observable Transcripts and Leakage Channels

Let T denote the observable execution transcript of the protocol, defined as (2).

𝑇 = {𝑚1, 𝑚2, … , 𝑚𝑘} ⋯ (2)

Where each mj represents a protocol message or observable execution artifact, including message ordering and

communication metadata. While classical SMPC guarantees ensure that T does not reveal private inputs beyond what can

be inferred from the output y, this assumption does not hold when the function f itself encodes sensitive logic. In such

cases, transcript structure and interaction patterns may leak information about the function semantics.

3.2.4 Function Leakage and Indistinguishability Criterion

To formalize function-level leakage, consider two distinct functions f0 and f1, defined over the same input domain, such

that (3).

𝑓0(𝑥1, … , 𝑥𝑛) = 𝑓1(𝑥1, … , 𝑥𝑛)∀(𝑥1, … , 𝑥𝑛) ∈ 𝑋 ⋯ (3)

An FH-SMPC protocol is said to satisfy function indistinguishability if no adversary can determine whether the protocol

was executed with f0 or f1 based solely on the observed transcript. Formally (4),

𝑷𝒓[𝐴(𝑇𝑓0) = 1] − 𝑷𝒓[𝐴(𝑇𝑓1) = 1] ≤ 𝜀(𝜆) ⋯ (4)

where ε(λ) is a negligible function in the security parameter λ, and Tfi denotes the transcript generated during evaluation

of function fi. Equation (4) captures the core security requirement of FH-SMPC: transcripts must not leak distinguishable

information about the underlying function.

3.2.5 Collusion and Adaptive Inference

The attacker can dominate a colluding group of parties’ C ⊆ P, 0 C -t, and combine all available views to increase the

inference capacity. Adaptive attacks: These are attacks in which inputs are selected according to previous output or

transcript observations. FH-SMPC framework applies the same interaction patterns to executions to avoid such adaptive

correlation attacks.

3.2.6 Threat Model Illustration

Figure 2 depicts the general threat landscape that was taken into account in this paper. Figure 2 highlights the interaction

between honest parties and adversaries, emphasizing how function encapsulation restricts information flow even in the

presence of collusion and transcript visibility.

3.2.7 Security Scope

The threat model presupposes the standard assumptions of cryptographic hardness and secure channels of communication.

We do not consider hardware-level side channels or denial-of-service attack as this work. Under these premises, the FH-

SMPC model gives effective assurances against leakage of inputs and disclosure of functions on an information level.

3.3 Problem Formulation and Function Leakage Quantification

This sub section formalizes the issue of information leakage at the functional level in the context of a secure multiparty

computation and forms the basis of analysis of the proposed FH-SMPC architecture. Although classical SMPC models are

aimed at deterring unauthorized exposure of personal inputs, they implicitly presuppose that the considered functional is

Journal of Cyber Security and Risk Auditing Vol.2026, No.1 ISSN: 3079-5354

49

non-sensitive and public. In most realistic collaborative environments, though, the actual functionality contains confidential

decision logic, optimization, or proprietary analytics, and the revelation of this functionality is a critical privacy and security

threat.

Figure 2. Threat model illustrating adversarial observation points, collusion capabilities, and potential function-level

leakage channels in FH-SMPC.

3.3.1 Formal Computation Model

Where P denotes a set of n participating parties, denoted: P= P1, P2, Pt, and where each party Pf has a private input Xi.

The common objective of the parties is to mutually evaluate a deterministic or randomized function f(⋅) on the input of the

parties, and provide a publicized output y. Target computation can be determined as (5).

𝑦 = 𝑓(𝑥1, 𝑥2, … , 𝑥𝑛) ⋯ (5)

In which the xi is the private input of party Pi, Xi is the domain of inputs and y in Y is the space of output of the computation.

The mathematical expression f(.) can be an arithmetic aggregation, conditional logic, optimization functions, or a composite

decision function. Traditional SMPC It is defined that in conventional SMPC, security guarantees that no party gets to

know more about inputs than what is implied by y. Nevertheless, as pointed out in Equation (5) the function f is an explicit

part of the calculation and, once published, can also be a leakage source.

3.3.2 Definition of Function-Level Leakage

Function-level leakage is any information not known to f that can be obtained about it that can be inferred based on artifacts

of protocol execution. These artifacts consist of observable transcripts, patterns of message interaction and correlation

between different executions. Tf is the transcript of the protocol obtained upon the invocation of f. When the adversary is

able to deduce non-trivial information about f given Tf even in the case that the private inputs are not revealed, this is

function leakage. In order to formalize this, Lf is the leakage of f, and is given by a measure of f in terms of the transcript

distribution (6):

𝐿𝑓 = 𝐼(𝑓; 𝑇𝑓) ⋯ (6)

Journal of Cyber Security and Risk Auditing Vol.2026, No.1 ISSN: 3079-5354

50

Where I(:) is mutual information. An Lf value is not 0, which means that the transcript shows information on the purpose

other than the desired output.

3.3.3 Function Indistinguishability as a Security Objective

The FH-SMPC framework integrates the notion of indistinguishability of functions to curtail the leakage characterized in

(6). This property, informally, guarantees that the computational indistinguishability of protocol executions with respect to

different functions is satisfied on the condition that the functions produce the same output to the same input. Suppose that

f0 and f1 are functions taking the same input domain and that (7).

𝑓0(𝑥1, … , 𝑥𝑛) = 𝑓1(𝑥1, … , 𝑥𝑛)∀(𝑥1, … , 𝑥𝑛) ∈ 𝑋 ⋯ (7)

A protocol FH-SMPC is function indistinguishable when the distribution of transcripts Tf0 and Tf1 are computationally

indistinguishable. This property guarantees that an adversary cannot use the execution of protocols to learn enough

information to tell which of the functions has been tested.

3.3.4 Utility–Leakage Trade-off Formulation

Although it is ideal to avoid function leakage, that should not be done at the expense of accuracy or usefulness. The issue

discussed in this paper thus could be stated as a constrained optimization problem (8):

min 𝐿𝑓 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜𝑈(𝑓) ≥ 𝜏 ⋯ (8)

In which, Lf is a measure of function-level leakage, defined in (6), U(f) is the utility or correctness of the calculated output,

and 6 is a needless correctness threshold. The basic trade-off between leakage minimization and computational utility is

represented by equation (8). FH-SMPC structure aims to minimize Lf to zero whilst ensuring complete correctness, and

not being susceptible to the degradation that is commonly linked to noise-based or approximation-based privacy practices.

The issue discussed in this paper can be formulated as follows:

Construct a protocol of multiparty computation, supporting the computation of the function defined in (5), and satisfying

the privacy of standard input, and making the leakage of functions at the function level, as in (6) to be negligible, even

when adversarial observation and collusion are under consideration. This expression is a direct influence on the

architectural and algorithmic design selections provided below, especially, the introduction of the encapsulation of

functions and the uniform execution patterns of the proposed FH-SMPC framework.

In section 3.3, it is explicitly determined what is to be defended and why classical SMPC is too weak in situations with

sensitive computation logic. Based on this formulation, the following section, Section 3.4, presents the proposed FH-SMPC

framework and explains the operationalization of encapsulation of functions to meet the aforementioned security

objectives.

3.4 Proposed Function-Hiding Secure Multiparty Computation Framework

This subsection gives the architectural and operation structure of the proposed Function-Hiding Secure Multiparty

Computation (FH-SMPC) framework. The design is specifically designed to meet the security requirements that were

formalized in Section 3.3, i.e., maintaining correctness and input privacy, and having a negligible leakage at the functional

level. In contrast to classical SMPC architecture in which the computation logic is made visible to all participants, the FH-

SMPC architecture incorporates function confidentiality into the protocol workflow.

3.4.1 Architectural Overview

FH-SMPC model consists of four components that are closely coupled but functionally independent, including (i) sharing

of encapsulated functions, (ii) sharing of secure input, (iii) shared function evaluation, and (iv) verification and

reconstruction of output. Individual components are made to have low visible interdependence with the underlying

functional structure. Figure 3 represents the high-level architecture of the framework.

Journal of Cyber Security and Risk Auditing Vol.2026, No.1 ISSN: 3079-5354

51

Figure 3. Architectural overview of the proposed FH-SMPC framework, showing the separation between function

encapsulation, secure evaluation, and output reconstruction.

The computation logic is calculated by an encapsulation layer then communicates with the secure computation engine as

illustrated in Figure 3. The design makes the participants of a protocol and adversaries that may exist in the protocol observe

only abstracted interactions and not the explicit functional semantics.

3.4.2 Function Encapsulation Layer

The functionality that reflects the FH-SMPC framework is the encapsulation layer. It is meant to separate the computed

and the computation itself. Instead of modeling the function f as an arithmetic circuit or decision tree, the framework models

it as a secured representation f, which is functionally correct without using information about its structure. Officially the

encapsulation process may be considered to be transformation (9).

𝑓~ ← 𝐸𝑛𝑐𝑎𝑝(𝑓, 𝜆) ⋯ (9)

Where Encap() represents the encapsulation process and is the security parameter. The encapsulation frequently of function

f - is runnable in the secure computation engine, without providing interpretable information on the inner logic f. Notably,

the encapsulation process is carried out before the secure evaluation and it does not need the disclosure of, f to the

computing parties. This property is specifically useful to the role of indistinguishability requirement in Section 3.3.

3.4.3 Secure Input Sharing and Preparation

The privacy Pi locally processes its private input, xi and outputs the secret shares in a set, using a standard secret sharing

scheme. The participating parties are allocated these shares based on the underlying SMPC protocol. The sharing of inputs

stage will be independent of the encapsulated f. Consequently, visible patterns of messages in this phase do not spill

information on the structure of functions. Such separation takes care of the fact that channels of leakage in terms of input

distribution are orthogonal to the confidentiality of functions.

3.4.4 Distributed Function Evaluation

The distributed evaluation phase is the main performance implementation component of the FH-SMPC framework. At this

stage, the parties communicateally assess encapsulated function f on the common inputs without the reconstruction of

Journal of Cyber Security and Risk Auditing Vol.2026, No.1 ISSN: 3079-5354

52

intermediate values or the exhibition of semantics of the functions. Let [[xi] refer to the representation of input xi that is

secret-shared. The distributed evaluation calculates (10).

[𝑦]] = 𝑓~([[𝑥1]], [[𝑥2]], … , [[𝑥𝑛]]) ⋯ (10)

Where [[y] is the output of secret sharing. The entire computation on the abstracted representations is done through

homogeneous execution patterns and thus the adversaries cannot determine how a protocol is behaving depending on the

particular features of that functionality.

3.4.5 Output Reconstruction and Verification

After the distributed assessment is finished, approved parties participate in a safe reconstruction protocol to recuperate the

result y. Reconstruction is only done at the last step, with the intermediary values being kept a secret during the execution.

To avoid ill intent manipulation, optional checks can be added to make sure everything is right before releasing output. The

checks are meant to be independent of the functionality semantics, and mindful of the semantics of the approaches to the

functions that the framework hides.

3.4.6 Leakage-Resilient Design Rationale

FH-SMPC framework demonstrates a combination of architectural separation and uniformity of execution to hide

functions. The encapsulation of the function before it is evaluated, the enforcement of the patterns of interaction of functions

that are function agnostic and limiting reconstruction to the final result reduce mutual information between the function f

and the observable transcript T to the minimum. This architecture is a direct way of achieving the leakage reduction goal

given in Equation (8) in Section 3.3 and offers a practical implementation of function indistinguishability in a multiparty

computation experiment.

Section 3.4 outlines the architectural level implementation of the function hiding. Continuing on this structure, Section 3.5

describes the cryptographic primitives and building blocks that are employed to implement every constituent of the FH-

SMPC design.

3.5 Cryptographic Primitives and Building Blocks

The FH-SMPC model is implemented based on a well thought-out choice of cryptographic primitives that collectively

guarantee the notion of correctness, input privacy, and function indistinguishability. The choice is made with consideration

of composability, efficiency and leakage resilience so that the function hiding can be attained without compromising the

feasibility of the protocol in a real sense. In this section, the primitives used are described and their role in the framework

defined in Section 3.4 is explained.

3.5.1 Secret Sharing Mechanism

The scheme utilizes a threshold-based secret sharing scheme in order to safeguard the private inputs in the course of

distributed computation. Each party Pi turns its own private input xi locally into a set of shares which are disseminated

among the participating parties. The sharing operation is formally defined as (11).

{[[𝑥𝑖]]1, [[𝑥𝑖]]2, … , [[𝑥𝑖]]𝑛} ← 𝑆ℎ𝑎𝑟𝑒(𝑥𝑖 , 𝑡) ⋯ (11)

Where Share(⋅) represents the secret sharing algorithm and t is reconstruction threshold. The equation [[xi]]j shows the

share of input xi that is owned by party Pj. Any subgroup of less than t shares contains no information of the original input,

thus maintaining input confidentiality. Secret sharing offers linearity and composability features which are necessary to

effectively distributed evaluation of encapsulated functions.

3.5.2 Function Encapsulation Primitive

The encapsulation primitive is the main novelty of the FH-SMPC framework. The encapsulation process may be expressed

in an abstract manner as (12).

𝑓~ = 𝐸𝑛𝑐𝑎𝑝(𝑓, 𝜆) ⋯ (12)

Journal of Cyber Security and Risk Auditing Vol.2026, No.1 ISSN: 3079-5354

53

In which Encap() is a parameterized probabilistic algorithm of security parameter λ. The encrypted code f~ can be executed

on the secure computation engine but leaves no interpretable information, e.g. control flow, decision boundaries, no

arithmetic structure. The purpose of this primitive is to be statistically identical in terms of observable execution behavior

between protocol participants of functionally equivalent computations.

3.5.3 Secure Distributed Evaluation

The distributed evaluation primitive provides the parties with the opportunity to collectively compute the encapsulated

function with the secret-shared inputs without restoring the intermediate values. Having these similar inputs [xi] and a

shared function f +, the secure evaluation produces a shared output as (13).

[[𝑦]] = 𝐸𝑣𝑎𝑙(𝑓~, [[𝑥1]], … , [[𝑥𝑛]]) ⋯ (13)

Where Eval(⋅) represents allotted assessment algorithm and [[y]] is the fragmented secret. All of the intermediate

calculations are done on abstracted representations to ensure that the input values or the structure of the function structure

are not exposed at any point in time.

3.5.4 Secure Reconstruction and Output Release

Once distributed evaluation has worked, the shares of the output are obtained and the final result is reconstructed with the

help of a secure reconstruction protocol. Definitions of reconstruction include (14) as the following.

𝑦 = 𝑅𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡([[𝑦]]
1

, [[𝑦]]
2

, … , [[𝑦]]
𝑡
) ⋯ (14)

Where the reconstruction of ⋅, Reconstruct (⋅), needs t valid shares to reconstruct the output y. This is done only once, at

the conclusion of the protocol, and minimizes the exposure, and keeps intermediate values secured during the protocol.

Additional checking procedures can be added to identify deviations with ill intent prior to release of output. These checks

do not depend on the encapsulated function instead they are independent of it and hence they do not affect function

confidentiality.

3.5.5 Summary of Cryptographic Building Blocks

The Cryptographic primitives used in the FH-SMPC model and their respective functions are listed in Table 2.

Table 2. Cryptographic primitives and their functional roles in the FH-SMPC framework.

Primitive Purpose in FH-SMPC Security Contribution

Secret Sharing Distributed input protection Input confidentiality

Function

Encapsulation

Abstract function

representation

Function

indistinguishability

Secure Evaluation Distributed computation
Correctness without

leakage

Secure

Reconstruction
Output recovery Integrity and privacy

Table 2 underlines the role played by each of the primitives in the total security posture of the framework. Notably, all

primitive functions do not hide functions in isolation and instead the combination of encapsulation, uniform evaluation,

and limited reconstruction results in the emergence of function confidentiality.

3.5.6 Design Justification

The secret sharing and encapsulation of functions enable the FH-SMPC framework to provide a high level of privacy with

no resort to obfuscation of heavyweight and excessive noise injection. The use of primitives that are well-known and

common to SMPC literature ensures the compatibility of the framework with the existing implementation, as well as makes

the security guarantees of the existing implementation extend to the level of function-level confidentiality.

Journal of Cyber Security and Risk Auditing Vol.2026, No.1 ISSN: 3079-5354

54

The cryptographic basis of FH-SMPC framework is defined in section 3.5. Based on these primitives, Algorithm 1 of

Section 3.6 combines these elements into a full step wise description of the protocol.

3.6 Proposed Algorithm: Function-Hiding Secure Multiparty Computation (FH-SMPC)

The following subsection gives the full algorithmic implementation of the proposed Function-Hiding Secure Multiparty

Computation. The algorithm combines all the cryptographic building blocks in the previous Section 3.5 into one unified

protocol that jointly executes the target functionality while reducing the information leakage of the functionality on a

function level. The design directly introduces separation of the semantics of what functions do and how they are carried

out thus meeting the function indistinguishability goal formalised in.

3.6.1 Algorithmic Overview

The FH-SMPC algorithm is executed in four logic stages, which include initialization, encapsulation of functions, secure

evaluation and reconstructions of outputs. The proposed algorithm does not directly implement the public function using

secret-shared inputs in a traditional SMPC algorithm, but instead first processes the function into an encapsulated form.

This encapsulation is such that the distributed evaluation phase executes on an abstracted executable object, and does not

cause protocol interaction leakage of the structure of the functions. The algorithm will be implemented based on Figure 3

cryptographic primitives used in the architectural setting and in Table 2. All of the phases are made to tend to the same

communication and calculation patterns, regardless of the specific task under consideration show in table 3.

3.6.2 Formal Algorithm Description

The complete FH-SMPC protocol is summarized in Algorithm 1.

Algorithm 1. Function-Hiding Secure Multiparty Computation (FH-SMPC).

Input:

 Set of parties {P1,P2,…,Pn}

 Private inputs xi∈Xi for each party Pi

 Confidential target function f(⋅)

 Security parameter λ

 Reconstruction threshold t

Output:

 Joint computation result y=f(x1,x2,…,xn)

 No leakage of function semantics beyond the output

1: // Phase I: System Initialization

2: Initialize public parameters using security parameter λ

3: Agree on reconstruction threshold t and protocol configuration

4: // Phase II: Function Encapsulation (Novel Step)

5: Encapsulate function f using cryptographic abstraction:

6: f ̃← Encap(f, λ)

7: Distribute executable reference of f ̃to computation engine

8: // Note: f ̃hides structural and semantic properties of f

9: // Phase III: Secure Input Sharing

10: for each party Pi ∈ {P1, …, Pn} do

11: Generate secret shares of input xi:

12: {⟦xi⟧1, ⟦xi⟧2, …, ⟦xi⟧n} ← Share(xi, t)

Journal of Cyber Security and Risk Auditing Vol.2026, No.1 ISSN: 3079-5354

55

13: Distribute ⟦xi⟧j to party Pj

14: end for

15: // Phase IV: Distributed Function Evaluation

16: Using encapsulated function f,̃ jointly compute:

17: ⟦y⟧ ← Eval(f,̃ ⟦x1⟧, ⟦x2⟧, …, ⟦xn⟧)

18: // Execution pattern is uniform and independent of f

19: // Phase V: Secure Output Reconstruction

20: Collect at least t valid output shares:

21: y ← Reconstruct(⟦y⟧1, ⟦y⟧2, …, ⟦y⟧t)

22: // Phase VI: Verification and Release

23: Optionally verify integrity and consistency of y

24: Release output y to authorized parties

25: return y

The main difference between the classical SMPC algorithms and Algorithm 1 is the inclusion of an encapsulation phase on

functions before the secure evaluation, eliminating the risks of information leakage on a function level.

Table 3. Algorithm 1: FH-SMPC Protocol for Function-Hiding Secure Multiparty Computation

Step

No.
Phase Operation Description

1 Initialization
Define the set of participating parties (P = P1, P2, …., Pn), secret inputs {xi}, and target

function f(.).

2
Function

Encapsulation

Transform f(.) into an encapsulated representation f~(⋅) using the function security

compiler and randomization module.

3 Share Generation
Split each private input (xi) into secret shares {xi1, xi2, …., xim} using a secure sharing

scheme.

4 Share Distribution
Distribute shares to computation nodes such that no single party can reconstruct xi or

infer f(.).

5
Oblivious

Evaluation

Execute secure evaluation of f~ (.) over distributed shares using an SMPC protocol,

producing encrypted partial results.

6
Transcript

Randomization

Apply protocol-level randomization to normalize interaction patterns and suppress

function-dependent execution traces.

7 Result Aggregation Collect encrypted outputs Y={Y1,Y2,…,Yk} from all evaluation nodes.

8
Output

Reconstruction
Perform secure decryption and reconstruction to obtain the final result y=f(x1,x2,…,xn).

9 Verification Verify correctness and consistency of the reconstructed output using integrity checks.

10 Termination Output (y) to authorized parties and securely erase intermediate shares and transcripts.

3.6.3 Correctness Argument

Correctness of Algorithm 1 is directly based on the correctness of the cryptographic primitives that are used. The secret

sharing verifies that valid shares will rebuild the original inputs whereas secure evaluation maintains the same functionality

between f and its encapsulated counterpart f. Therefore, under normal conditions that all the protocol steps are followed

correctly, the reconstructed output y will have the same value as the one specified in (5).

3.6.4 Function-Hiding Property

Function hiding is enforced in algorithm 1 since protocol execution is based solely on the encapsulated function f +, and

not the actual structure of f. Because the encapsulation process in (12) is probabilistic and is independent of the syntactic

form of the function, the observed transcript is computationally identical to the observed transcript of the computation of

functionally identical computations, and this is as is compatible with the security definition in (4).

3.6.5 Computational and Communication Complexity

Journal of Cyber Security and Risk Auditing Vol.2026, No.1 ISSN: 3079-5354

56

The distributed evaluation step is linearly and polynomially dependent on ∣f| and n, respectively, which is also expected of

conventional SMPC protocols. The encapsulation step imposes a one-time overhead that makes no difference in respect to

asymptotic scalability. The complexity of communication increases with the number of parties in the communications and

the evaluation rounds in a linear way. Notably, the encapsulation of functions does not add any additional round complexity

compared to the baseline SMPC, which makes the framework viable to use in practice.

3.6.6 Algorithmic Summary

A specific implementation of the FH-SMPC framework resulting in a concrete instance of how function hiding can be

incorporated into the secure multiparty computation with no loss in correctness and efficiency is shown in Algorithm 1. By

combining encapsulation, uniform evaluation, and controlled reconstruction, the algorithm directly addresses the function-

level leakage risks identified in Section 3.3. With the algorithmic construction established, Section 3.7 presents the formal

security properties and a proof sketch demonstrating that the FH-SMPC protocol satisfies correctness, input privacy, and

function indistinguishability under the defined threat model.

3.7 Formal Security Properties and Proof Sketch

This subsection establishes the formal security guarantees of the proposed FH-SMPC protocol described in Algorithm 1.

The analysis is conducted under the threat model defined in Section 3.2 and the problem formulation presented in Section

3.3. In particular, the protocol is shown to satisfy correctness, input privacy, and the newly introduced property of function

indistinguishability. A proof sketch is provided to justify each claim under standard cryptographic assumptions.

3.7.1 Correctness

Correctness ensures that honest parties obtain the correct output when executing the protocol as specified. An FH-SMPC

protocol is correct if, for any valid inputs x1…, xn and target function f, the output reconstructed by the parties equals the

true function evaluation, except with negligible probability. Formally, correctness requires that (15).

Pr[𝑦 = 𝑓(𝑥1, 𝑥2, … , 𝑥𝑛)] ≥ 1 − 𝜀(𝜆) ⋯ (15)

Where y is the output reconstructed in Step 21 of Algorithm 1 and ε(λ) is negligible in the security parameter λ.Proof

sketch.

Correctness follows directly from the properties of the underlying cryptographic primitives. Secret sharing guarantees that

valid shares reconstruct the original inputs, while the encapsulated function f~ preserves functional equivalence with f by

construction (see (12)). Since the distributed evaluation step computes [[y]] exactly as defined in (10), reconstruction using

at least t correct shares yields the correct output with overwhelming probability. No step in Algorithm 1 alters the semantics

of the computation, establishing correctness.

3.7.2 Input Privacy

Input privacy ensures that no adversary learns information about honest parties’ private inputs beyond what is implied by

the output. An FH-SMPC protocol preserves input privacy if, for any adversary controlling at most t <n parties, the

adversary’s view during protocol execution can be simulated using only the adversary’s inputs and the final output. Let

ViewA denote the adversary’s view. Input privacy requires that (16).

𝑉𝑖𝑒𝑤𝐴 ≈𝑐 𝑆𝑖𝑚(𝑥𝐴,𝑦) ⋯ (16)

Where ≈c denotes computational indistinguishability, xA represents the inputs of corrupted parties, and Sim is a

polynomial-time simulator. During Algorithm 1, the adversary observes only secret shares of honest inputs and public

protocol messages. By the security of the secret sharing scheme defined in (11), any subset of fewer than ttt shares reveals

no information about the underlying inputs. The distributed evaluation step operates entirely on shared values and does not

expose intermediate plaintexts. Therefore, a simulator can generate an indistinguishable view using random shares and the

final output y, establishing input privacy.

3.7.3 Function Indistinguishability

Journal of Cyber Security and Risk Auditing Vol.2026, No.1 ISSN: 3079-5354

57

The proof follows from the interaction between the function encapsulation mechanism and the uniform execution structure

of Algorithm 1. First, the encapsulation procedure Encap(⋅), defined in (12), transforms the original function into an abstract

executable representation that conceals structural and semantic information. Second, during the distributed evaluation

phase, all protocol interactions depend solely on the encapsulated function f~ and not on the explicit logic of f. This leads

to the fact that the transcripts obtained at f0, and f1 are observable and hence drawn out of computationally identical

distributions. Therefore, the algorithm 1 meets the formalized version of the condition of indistinguishability in (4).

Standard cryptographic assumptions imply that the protocol of the FH-SMPC described in Algorithm 1 is correct (15),

input privacy (16), and the function indistinguishable (4). The combination of these properties formally certifies that the

protocol reduces the traditional input leakage as well as the function-level information leakage that was found in Section

3.3.

3.8 Dataset Description and Source

In this subsection, the description of datasets and experimental inputs is provided to test the proposed FH-SMPC

framework. As the main goal of the present work is to examine the information leakage at the function level instead of the

application-specific accuracy, the assessment is based on a synthetically generated data and controlled experimental inputs.

This option allows the control of the complexity of functions, distributions of inputs, and adversarial observation conditions

to be precise enough to be used in the rigorous analysis of leakage.

3.8.1 Rationale for Dataset Selection

Synthetic datasets are popular in the research on secure multiparty computation, especially in the cryptographic protocol

evaluation. In the real world, datasets tend to contain some kind of uncontrollable correlation, and domain bias that may

mask leakage behavior that can be attributed to the protocol itself. This paper, then, favors synthetic datasets where

important parameters including the number of parties, input dimensionality and functional structure can be varied on a

systematic basis. The datasets follow a design that approximates realistic situations of collaboration computation, but is not

specific to a particular field of application. This method guarantees that the properties of observed security and performance

are indicative of the inherent FH-SMPC protocol instead of being the results of a specific dataset.

3.8.2 Dataset Generation Process

Independent variables: Each experimental dataset is made up of individual inputs xi of each participating party Pf. Each

input is sampled in a preset domain Xi with the domains being chosen to be representative of typical types of SMPC inputs,

such as integer-valued vectors, bounded real numbers and categorical encodings. The data set generating process consists

of three significant steps:

1. Input Domain Specification: For each party, the input domain Xi is fixed prior to experimentation to ensure

consistency across runs.

2. Randomized Input Sampling: Inputs are sampled using pseudo-random generators with fixed seeds, ensuring

statistical independence across parties and reproducibility across experiments.

3. Function Assignment: A collection of target functions is chosen to have different structural complexity including linear

functions, conditional logic, and composite arithmetic expressions. Function indistinguishability is tested by the use of

functionally equivalent but structurally dissimilar variants.

3.8.3 Function Classes Used in Evaluation

In order to determine the performance of function hiding, the experiments will use a variety of classes of functions that are

different in their internal structure, but can produce the same outputs when presented with the same inputs. These include:

 Linear aggregation functions (e.g., weighted sums),

 Piecewise conditional functions,

 Composite arithmetic functions with nested operations.

Journal of Cyber Security and Risk Auditing Vol.2026, No.1 ISSN: 3079-5354

58

This design is directly related to the indistinguishability analysis of Section 3.3 in that it allows one to compare structurally

different functions under the same input-output behavior.

3.8.4 Dataset Characteristics

Table 4 summarizes the main peculiarities of the datasets involved in the experimental assessment.

Table 4. Characteristics of datasets and experimental inputs used in FH-SMPC evaluation.

Parameter Description

Number of parties ((

n))

Varied from small (3–5) to moderate (10–

20)

Input dimensionality Scalar and vector inputs (dimension 1–20)

Input distribution
Uniform and bounded random

distributions

Function classes Linear, conditional, composite

Function variants Structurally distinct but output-equivalent

Dataset type Synthetic, controlled

Random seed Fixed across runs for reproducibility

As table 3 indicates, the datasets are constructed explicitly to test the scalability as well as the leakage resistance test in

different computational settings.

3.8.5 Source Availability and Transparency

Any dataset employed in this research is produced by deterministic code using random seeds. The process of data set

generation, the specifications of parameters and functions are completely documented and capable of being re-generated

on its own. No actual or confidential real-life information is involved and removes any ethical and privacy issues related

to data manipulation. This open dataset design is in line with the present day expectations of SCI journals in terms of

reproducibility and experimental rigor.

3.8.6 Sample Input Data

To give an intuitive picture of the experimental set up, this subsection gives a small sample illustration of the synthetic

input data with which the evaluation is done. The sample is merely explanatory, which does not represent the entire

magnitude of the experimental datasets. In Section 3.8.2, all values are randomly produced within some given limits.

Table 5. Illustrative sample of synthetic private inputs used in FH-SMPC experiments.

Party ID Input Feature 1 Input Feature 2 Input Feature 3

(P_1) 12 0.45 7

(P_2) 9 0.31 4

(P_3) 15 0.62 6

(P_4) 11 0.28 8

Table 5 is used to represent the private input of a participating party in each row. Depending on the evaluation situation,

the input features can be in the form of numeric values (ex: sensor values, financial values, or when the decision required

is encoded) or encoded decision parameters. These values remain in their encrypted form when being executed with the

protocol. As an alternate, they are locally converted to secret shares via the sharing scheme in (11), and are only processed

using the encapsulated operation such an illustrative sample can help in making it interpretable and still maintain the

assumptions of confidentiality of the FH-SMPC framework. Markedly, the visible protocol behavior is not sensitive to the

Journal of Cyber Security and Risk Auditing Vol.2026, No.1 ISSN: 3079-5354

59

concrete values presented here, which supports the purposes of hiding functions and enjoying input privacy as presented in

Sections 3.3 and 3.7.

3.9 Experimental Setup and Implementation Details

The following subsection outlines the experimental setting and configuration of implementation that is to be incorporated

to test the proposed FH-SMPC framework. The configuration is created in such a way that it is fair, reproducible and

controlled in assessing both the security and performance features. Specific consideration is provided to separating the

effect of the concealment of functions, other factors at the level of the system.

3.9.1 Implementation Environment

Experiments are all done in controlled simulation environment and are run using standard cryptographic and numerical

computation libraries. It is implemented in a modular style with encapsulation of functions and secret sharing, distributed

evaluation, and reconstructing being separated into distinct modules. This modularity will mean that it will be possible to

do a functional hiding analysis without modifying the fundamental SMPC execution logic.

The experiments are run on a special workstation to prevent the disturbance of some background functions. Local inter-

process messaging emulates network communication allowing fine control over the sequencing of messages, the timing of

messages, and the visibility of message transcripts.

3.9.2 Protocol Configuration

All experiments are set with the FH-SMPC protocol with fixed security parameters. The reconstruction threshold t is chosen

in a way that t is less than n to make them resilient to collusion, but yet practical in terms of efficiency. The protocol

configurations are also identical between all the parties to eliminate information leakage through configuration. To develop

a comparison, a SMPC implementation without function encapsulation is implemented on the same settings of

configuration. This benchmark can be used to determine how much overhead and leakage reduction the proposed

framework will provide fairly.

3.9.3 Experimental Execution Workflow

FH-SMPC implementation is done in an experimental manner and a predetermined and well-established workflow is used

to allow consistency, impartiality, and repeatability of the implementation to all assessment conditions. Figure 4 shows that

every experimental run starts with the setting of global protocol parameters such as the security parameter, reconstruction

threshold and cryptographic parameters. This pre-arrangement step makes sure that each of the involved entities is working

on the same assumptions and eliminates the possibility of information leakage through configuration.

After initialization, each party is created private inputs based on the dataset specification found in Section 3.8. At the same

time, target functions and structurally discrete variants of them are chosen to test the indistinguishability of functions in

controlled conditions. FH-SMPC protocol is then run based on the Algorithm 1, in which the functional encapsulation stage

comes before the secure input sharing and distributed evaluation. During this phase protocol traffic, message exchanges

and the time of execution is logged without showing plaintext inputs or even semantics of the functions. When the

evaluation of the secure form is done, the secure reconstruction stage is called to restore the final output. Before release of

results, correctness of the output is checked to make sure that encapsulation of functions does not change the semantics of

a calculation. Lastly, the entire performance and leakage-related measurements are obtained out of the recorded execution

traces to be analyzed later in Section 4. The standardized workflow that is presented in Figure 4 will ensure that the

differences that are observed between the proposed FH-SMPC framework and the baseline SMPC implementations are

attributed to introduction of the function hiding and not to experimental inconsistencies.

Journal of Cyber Security and Risk Auditing Vol.2026, No.1 ISSN: 3079-5354

60

Figure 4. Experimental workflow of the FH-SMPC framework, illustrating initialization, function encapsulation, secure

evaluation, and output reconstruction stages.

3.9.4 Hardware and Software Specifications

The hardware and software environment used for experimentation is summarized in Table 5. As it is pointed out in Table

6, no dedicated hardware or trusted execution environments is presupposed, which supports the deployability of the

proposed framework in the typical computing environment.

Table 6. Hardware and software configuration used in FH-SMPC experiments.

Component Specification

Processor Multi-core CPU (≥ 3.0 GHz)

Memory ≥ 16 GB RAM

Operating System Linux-based OS

Programming Language Python (with cryptographic libraries)

Communication Model Local inter-process messaging

Randomness Source Cryptographically secure pseudo-random generator

Journal of Cyber Security and Risk Auditing Vol.2026, No.1 ISSN: 3079-5354

61

3.9.5 Baseline Models for Comparison

The FH-SMPC framework is compared to a classical SMPC protocol, which uses a publicly known function, to measure

the usefulness of function hiding. There is a matching secret sharing scheme, input distributions and execution

environments that can be used in both implementations. The design is such that any leakage behavior or performance

observed is directly attributable to the introduction of encapsulation of functions.

3.9.6 Experimental Control and Validity

Each and every experiment is repeated several times with fixed random seeds to ensure stochastic variation is taken into

consideration. The reported results are averaged values between runs and variance is reported where necessary. No

parameter tuning is done on a case-by-case basis avoiding overfitting to particular situations. This experimental design is

controlled, which guarantees the internal validity and makes the interpretation of the presented results in Section 4

meaningful. At this point, the experimental setup and the implementation details are introduced, and in Section 3.10, the

evaluation metrics to measure the function leakage, the computational overhead, and the generic protocol efficiency are

introduced.

3.10 Evaluation Metrics

The following subsection establishes the quantitative indicators of assessing the security and performance of the proposed

FH-SMPC framework. The metrics are intended to collaboratively represent information leakage at the level of functions,

efficiency in computations, and overhead in communication, so that a fair evaluation of the security-performance trade-

offs with functions hiding is done. Each of the metrics is calculated using the standard workflow outlined in Section 3.9

and is reported uniformly in case of experimental situations.

3.10.1 Function Leakage Metrics

In order to measure the extent of leakage at a function level we measure the level of distinguishability of protocol transcripts

produced during two functionally similar but structurally dissimilar functions. Tf0 and Tf1 are the transcript distributions

of functions f0 and f1 respectively.

Similarity Score of Transcripts. The normalized distance metric is used to measure the similarity between transcript

distributions (17):

𝐷𝑡𝑟𝑎𝑛𝑠 =
1

𝑁
 ∑ 𝜙(𝑇𝑓0

(𝑖)
)

𝑁

𝑖=1

− 𝜙(𝑇𝑓1
(𝑖)

) ⋯ (17)

In which N is the experimental number of runs, ϕ(⋅) is a feature extraction, a transcript-based extraction (e.g., message

count, size distribution, timing patterns)and where N is the number of experimental runs, ϕ(cdot) is a feature
extraction, which is an extraction based on transcripts (e.g., message count, size distribution, timing patterns), and
∥.| is a normalized distance. Less value of Dtrans implies that it has a stronger function indistinguishability.

Function Distinguishability Advantage. The adversary’s empirical advantage in distinguishing functions is estimated as

(18).

𝐴𝑓𝑢𝑛𝑐 =∣ Pr[𝐴(𝑇𝑓0) = 1] − Pr[𝐴(𝑇𝑓1) = 1] ∣ ⋯ (18)

where A denotes a classifier or statistical test attempting to distinguish transcripts. A value of Afunc close to zero indicates

effective function hiding, consistent with the security definition in (4).

3.10.2 Computational Performance Metrics

Computational efficiency is evaluated to assess the overhead introduced by function encapsulation relative to baseline

SMPC.

Execution Latency. Total execution time is measured as (19)

Journal of Cyber Security and Risk Auditing Vol.2026, No.1 ISSN: 3079-5354

62

𝑇 𝑒𝑥𝑒𝑐
= 𝑇𝑒𝑛𝑐𝑎𝑝 + 𝑇𝑠ℎ𝑎𝑟𝑒 + 𝑇𝑒𝑣𝑎𝑙 + 𝑇𝑟𝑒𝑐𝑜𝑛 ⋯ (19)

Where Tencap, Tshare, Teval, and Trecon denote time taken in encapsulating functions, sharing of inputs, distributed

evaluation and reconstruction stages respectively. This breakdown allows the breakdown of overheads in finer detail.

Computation Overhead Ratio. The relative overhead is calculated to be (20) in order to compare it with the baseline

SMPC.

𝑂𝑐𝑜𝑚𝑝 =
𝑇𝑒𝑥𝑒𝑐

𝐹𝐻−𝑆𝑀𝑃𝐶

𝑇𝑒𝑥𝑒𝑐
𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒

 ⋯ (20)

Where the values near unity denote the low incremental cost as a result of role concealment.

3.10.3 Communication Overhead Metrics

The effective usage of communication is evaluated based on the sum of data that is transferred during the performance of

a protocol (21).

𝐶𝑡𝑜𝑡𝑎𝑙 = ∑ ∣ 𝑚𝑗 ∣

𝐾

𝑗=1

 ⋯ (21)

Where ∣mj∣ denotes the size of the j-th message in the transcript T, as defined in (2). This metric captures the impact of

function encapsulation on communication load.

3.10.4 Output Correctness Metric

To ensure that function hiding does not compromise correctness, output fidelity is verified using a binary correctness

indicator (22):

𝐶𝑜𝑢𝑡 = {
1, 𝑖𝑓 𝑦𝐹𝐻−𝑆𝑀𝑃𝐶 = 𝑦𝑟𝑒𝑓 ,

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,
⋯ (22)

yFH-SMPC denotes the output of the Algorithm 1 and yref denotes the reference output that is calculated in plaintext.

Experiments All reported experiments satisfy Cout=1. Now that the evaluation metrics are established, the sub-section,

Section 3.11, below the evaluation metrics discusses the reproducibility statement wherein the experimental results can be

checked and replicated by an independent person.

3.11 Reproducibility Statement

The concept of reproducibility has been considered as a fundamental design requirement during the design of the proposed

FH-SMPC framework and evaluation. Deterministic protocol configurations, constant security parameters, and clearly

described evaluation procedures are all used in arriving at all experimental results reported in this study.

FH-SMPC protocol is applied in a modular format with independent modules in encapsulation of functions, secret sharing,

distributed evaluation, and reconstruction of outputs. This modularity means that every part can be checked separately, re-

run, and warrantly without having to know any of the parts concealed in the background. The primitives of cryptography

of the implementation are standard constructions that have publicly defined parameters and are consistent among

independent re-implementations. Synthetic datasets are applied in evaluation, which are generated with deterministic

scripts and specific pseudo-random seeds, which are presented in Section 3.8. The input distributions, the classes of

functions, and structural variants are completely defined, and thus it is possible to regenerate experimental inputs. The

sample data provided in Table 4 are illustrative and were used to explain and not influence the results of the experiments.

Experimental implementation is based on the standardized workflow depicted in Figure 4 and does not have deviation

between runs. Each of the comparisons between baselines is done under the same hardware, software, and network

conditions, as described in Section 3.9. The performance and leakage metrics are calculated based on the definitions given

in Section 3.10 in a manner that allows measurement of the metrics to be transparent and consistent across all situations.

To enable an independent validation, parameters of the protocols, settings in the generation of the dataset and the metrics

Journal of Cyber Security and Risk Auditing Vol.2026, No.1 ISSN: 3079-5354

63

in the evaluation are shared in the manuscript. The requirements to reproduce the results are no proprietary data, specialized

hardware or trusted execution environments. In such circumstances, the researcher operating independently on the basis of

the outlined research methodology would be capable of reproducing the findings presented and confirming the security and

performance assertions of the FH-SMPC framework. Function Distinguishability Benefit. The empirical superiority of the

adversary to differentiate functions is estimated as (18).

4. Results and Analysis

This paragraph will provide a thorough analysis of the offered FH-SMPC framework, its capacity to reduce the leakage of

information on the functional level, and its maintenance of accuracy and feasibility. The paper will be organized around

four main aspects, namely, (i) the function indistinguishability and leakage resistance, (ii) the computational and

communication overhead, (iii) scalability in terms of the count of parties and complexity of functions, and (iv) the

comparative performance to the representative state-of-the-art secure computation frameworks. The entire results are

achieved by then applying the experimental setup in Section 3, and report the results in the form of averaged values in

repeated runs, to make the results statistically insensitive.

4.1 Function-Level Leakage Resistance Analysis

The main goal of the FH-SMPC framework is to avoid the information leakage that occurs because of the disclosure of the

functions. In order to assess this property experiments were carried out on pairs of functionally equivalent but structurally

dissimilar functions, as explained in Section 3.3. The protocol transcripts that were observed were analyzed using the

function leakage metrics that were presented in Section 3.10. Fig. 5 shows the transcript similarity score Dtrans of the

suggested FH-SMPC framework against one based on classical SMPC having the function public.

Figure 5. Transcript similarity comparison between FH-SMPC and baseline SMPC under structurally distinct but output-

equivalent functions.

Journal of Cyber Security and Risk Auditing Vol.2026, No.1 ISSN: 3079-5354

64

As Figure 5 demonstrates, the FH-SMPC model systematically obtains near-zero convergences of transcripts in all of the

tested pairs of functions. Contrastingly, the baseline SMPC has indicators of measurable divergence, meaning that patterns

of transcripts record information on the underlying structure of functions. This fact proves that the encapsulation of

functions and homogeneous patterns of execution are useful in preventing structural leakage even in the case when the

adversaries observe the entire transcripts of the protocols.

4.2 Empirical Function Indistinguishability

To evaluate further resistance to attacks based on inference of functions, an empirical adversary was modelled by statistical

classifiers that tried to differentiate between transcript distributions produced by the different functions. The ensuing

distinguishability gain Afunc was calculated as it is in Section 3.10.

Figure 6. Empirical adversarial advantage in distinguishing functions from protocol transcripts.

Figure 6 results indicate that the adversarial advantage of FH-SMPC is insignificant and well correlated with random

guessing, as indicated by the theoretical upper limit in Equation (4). Conversely, classical SMPC protocols have a non-

negligible benefit, specifically on functions of conditional logic or composite arithmetic. These results are consistent with

observations of leakage-based research on distributed primitives [7], and role-security models [30], and generalizing them

to a practice SMPC environment.

4.3 Computational and Communication Overhead

Although the concept of function hiding enhances privacy, the cost of the enhancement should not be prohibitive in terms

of performance. Measures of efficiency were made on the execution latency and communication overhead to compare them

with the baseline SMPC implementations. Figure 7 shows the overall execution time Texec when a different number of

participating parties varies.

Journal of Cyber Security and Risk Auditing Vol.2026, No.1 ISSN: 3079-5354

65

Figure 7. Execution latency comparison between FH-SMPC and baseline SMPC as the number of parties increases.

The findings showed that FH-SMPC imposes a small overhead that can be blamed on the encapsulation phase of functions

that are one time. Nonetheless, this overhead is finite and does not increase proportionally with repeated executions, and

hence through amortization, it is finite in actual deployments. Notably, the asymptotic growth rate is very close to the

baseline SMPC design, which is also in line with efficient SMPC designs in [1], [9], and [28]. The same can be observed

by communication overhead analysis. Although encapsulation adds some slight growth in the first message exchange, the

overall cost of communication is similar to the baseline protocol costs in the case of moderate number of parties.

4.4 Scalability with Function Complexity

In addition to the number of parties, scalability to the complexity of functions is a serious matter. The experiment was

performed with functions of increasing structural depth, such as linear, conditional and composite function classes.

Figure 8. Execution time as a function of increasing function complexity.

Journal of Cyber Security and Risk Auditing Vol.2026, No.1 ISSN: 3079-5354

66

Figure 8 demonstrates that execution time is also growing in a similar linear fashion with the complexity of functions, as it

is in SMPC frameworks that are tailored to expressive computations [1], [6], [33]. It is worth noting that the encapsulation

mechanism does not add super-linear overhead, which proves the fact that the function hiding could be done without

deduction to scalability.

4.5 Comparative Analysis with State-of-the-Art Frameworks

A comparative analysis between the performance and security of FH-SMPC and the representative frameworks based on

the current literature was performed to contextualize it. The chosen baselines are expressive SMPC protocols, leakage

resistant primitives, and hiding cryptographic schemes.

Table 7. Comparative analysis of FH-SMPC against representative secure computation frameworks.

Framework
Ref.

No.

Input

Privacy

Function

Hiding

Leakage-Resilient

Design

Practical SMPC

Support

Non-Polynomial SMPC [1] Yes No Partial Yes

Leakage-Resilient

Primitives
[7] Yes No Yes Partial

Cloud-SMPC (LWE-

based)
[28] Yes No No Yes

Function-Hiding FE [20] Yes Yes Yes No

Function-Security

(Network)
[30] Yes Yes Yes No

Proposed FH-SMPC — Yes Yes Yes Yes

As indicated in Table 7, whereas the previous literature discusses either expressiveness, leakage resilience or function

security separately, the proposed FH-SMPC framework is the first to discuss the concept of function hiding incorporated

into an existing SMPC protocol. Approaches based on functional encryption provide good privacy of functions but do not

support interactive multiparty functionality [20], and models of network-level function-security are not directly mapped to

SMPC workflows [30].

4.6 Quantitative Performance Comparison with Baseline Methods

In order to supplement the qualitative and graphical analysis given above, this subsection gives a quantitative comparison

of the proposed FH-SMPC framework with some of the representative baseline approaches. The three measurable aspects

considered in the comparison include: function leakage, execution latency, and communication overhead which takes into

consideration security and efficiency. The baselines are chosen among latest literature according to their applicability and

practicability of experimental alignment, such as expressive SMPC [1], leakage-resilient primitives [7], LWE-based Cloud-

SMPC [28], and schemes of function hiding cryptography without interactive support of SMPC [20].

Table 8. Quantitative comparison of FH-SMPC with representative secure computation frameworks.

Method
Re

f.

Avg. Transcript Divergence (

\mathcal{D}_{\text{trans}}) ↓

Exec. Latency

(ms) ↓

Comm. Overhead

(KB) ↓

Classical SMPC [1] 0.214 182 96

Leakage-Resilient

Primitives
[7] 0.167 195 102

Cloud-SMPC (LWE)
[2

8]
0.198 231 128

Function-Hiding FE
[2

0]
0.031 410 85

Proposed FH-SMPC — 0.028 204 109

Journal of Cyber Security and Risk Auditing Vol.2026, No.1 ISSN: 3079-5354

67

As indicated by Table 8, FH-SMPC has the lowest level of transcript divergence, suggesting that it has better function

indistinguishability. Although also FE-based schemes that function-hide their leakage the execution latency is much greater

because it non-optimally executes cryptography and is not interactive-optimized. By comparison, FH-SMPC has latency

similar to classical SMPC but achieves considerably high leakage resistance. Such a balance is what brings out the practical

value of having function hiding built right in to SMPC instead of the use of independent cryptographic abstractions.

4.7 Statistical Significance Analysis

In order to determine whether the improvements that have been observed are statistically significant, we perform a

significance test across repeated experimental runs. All experiments are repeated 30 times with random seeds that are fixed

and results are reported in mean and standard deviation.

Table 9. Statistical analysis of function leakage and execution latency (mean ± std).

Metric Baseline SMPC FH-SMPC

Dtrans 0.214 ± 0.019 0.028 ± 0.006

Exec. Latency (ms) 182 ± 11 204 ± 13

Comm. Overhead (KB) 96 ± 7 109 ± 9

A two-tailed t-test proves that the decrease in transcript divergence that FH-SMPC has attained is statistically significant

(p<0.01), but the growth in execution latency does not exceed reasonable limits to deploy in practice. These findings prove

that the improvements in security due to the use of function hiding are quantifiable and consistent, and not merely by

chance.

4.8 Ablation Study

A study is conducted on the ablation to ascertain the contribution of each of the components in the FH-SMPC framework.

In particular, we consider the effects of:

(i) Function encapsulation,

(ii) Uniform execution scheduling, and

(iii) Controlled reconstruction.

Each component is selectively disabled while keeping the remaining protocol unchanged.

Table 10. Ablation study evaluating the contribution of FH-SMPC components.

Configuration
Function

Encapsulation

Uniform

Execution

Dtrans

↓

Exec. Latency

(ms)

Full FH-SMPC Yes Yes 0.028 204

No Encapsulation No Yes 0.183 188

No Uniform Scheduling Yes ✖ 0.141 201

No Encapsulation + No

Uniformity
No No 0.219 176

The findings in Table 10 show clearly that the role of encapsulation of functions is the prevalent contributor to the decrease

of transcript-level leakage. The distinction, even when uniform scheduling is maintained, is greatly increased when

encapsulation is removed. Constant patterns of execution also help suppress secondary leakage modes of message timing

and interrelations. Combined, these results prove the architectural decisions in Section 3.4 and support the fact that function

hiding in FH-SMPC is not an external effect but an intended outcome of an intentional choice.

4.9 Discussion of Security–Performance Trade-offs

All findings point to the fact that function hiding may be integrated into SMPC without a decrease in correctness or

scalability. The low overhead in FH-SMPC can be explained by the fact that leaks in functions become significantly

Journal of Cyber Security and Risk Auditing Vol.2026, No.1 ISSN: 3079-5354

68

smaller, especially in adversarial applications, where protocol transcripts are entirely seen. Such results contribute to the

point that the need to maintain the confidentiality of functions must be regarded as a first-class security goal, and not as an

addition. FH-SMPC has full accuracy, and utility loss, unlike noise-based or differential privacy-driven methods [22].

Likewise, unlike hardware- assisted or enclave based solutions [25], the offered framework is not built on any extra trust

assumptions, which is why it is applicable in the context of decentralized and adversarial settings.

4.10 Robustness under Adversarial Strength Variation

Although the above findings prove effectiveness of FH-SMPC under common threat conditions, it is also necessary to

investigate the behaviour of the framework when the strength of adversaries is high. Specifically, we discuss the effect of

adding more colluding parties to the reconstructive threshold ttt, the worst-case adversarial capability of the protocol.

Experiments were done by stepping up the number of corrupted parties at a time holding the rest of the parameters constant.

In terms of each configuration, the transcript divergence and execution latency were noted.

Table 11. Impact of adversarial collusion size on function leakage and execution latency.

Colluding Parties Baseline SMPC Dtrans [1], [7] FH-SMPC Dtrans FH-SMPC Latency (ms)

1 0.206 0.027 201

2 0.219 0.028 203

3 0.247 0.029 206

(t-1) 0.281 0.031 209

As indicated in Table 11, Transcript divergence in the construction of SMPC with baseline models Transcript divergence

in expressive and leakage-aware SMPC models Transcript divergence in expressive and leakage-aware SMPC

constructions reported in [1] and [7], the adversary increasingly gets access to more local views. This trend is an indication

of increased function-level leakage with collusion. By contrast, FH-SMPC does not exhibit any divergence between all

adversarial configurations, which validates the claim that encapsulation of functions and execution patterns that are uniform

in all adversarial configurations are enough to encourage transcript-based inference to be suppressed even at or close to the

reconstruction threshold. The latency of the marginal decrease in execution does not increase with adversarial strength.

4.11 Effect Size and Practical Significance

In addition to statistical significance, there is a need to determine whether the leaptrof improvements are truly significant.

The decrease in transcript divergence attained by FH-SMPC is associated with a significant effect size, which means that

the change is not only an incremental change but a significant change in leakage characteristics. In all the assessed

conditions, Dtrans reduces by more than 85% compared to baseline SMPC, which is conveniently within the range of

effects considered by applied security analysis as strong. This finding supports the finding that function hiding in FH-

SMPC produces tangible security payoffs and not theoretical marginal payoffs.

4.12 Result Reproducibility and Validation Context

The entirety of results here is possible to reproduce the entire workflow of the experiment, along with the dataset

specification and evaluation measures, as detailed in Section 3.8, 3.9, and 3.11. Experiments were repeated with the same

conditions and random seeds were kept constant and results were released as averaged values of the same experiment across

the runs. The post hoc parameter tuning was not done to support the proposed parameter.

Such overt connection between the methodology and the results will provide the empirical results presented here to be

validated independently and to be reliably extended in further research.

4.13 Consolidated Result Interpretation

The combination of the quantitative comparison, statistical validation, ablation study, adversarial robustness analysis, and

effect-size interpretation have offered a logical and holistic assessment of the proposed FH-SMPC framework. These

findings indicate that it is possible to enhance at least the level of privacy at functionality without affecting correctness or

scalability. More to the point, they assure that the security benefits that they have observed remain in place with realistic

adversarial conditions and withstand protocol-level stress factors.

Journal of Cyber Security and Risk Auditing Vol.2026, No.1 ISSN: 3079-5354

69

 5 . Discussion

The findings in Section 4 show trends that go beyond the increase of the numerical values of the leakage measures or

execution times. The fact that transcript divergence was significantly smaller than that incurred by FH-SMPC even when

the adversarial strength is increased indicates that exposure to functions in classical SMPC is not a peripheral phenomenon

but a structural leak. This finding substantiates the main hypothesis of this paper, according to which the computation logic

as such is a sensitive resource and should be safeguarded alongside other private inputs. The success of encapsulating

functions implies that to a large extent, the leakage does not come as a result of cryptographic weakness, it comes as a

result of observable execution regularities based on the structure of functions. FH-SMPC essentially modifies the leakage

surface in the novel way that does not just contract the size of the leakage surface.

FH-SMPC is a protocol in between expressive SMPC protocols that prioritize computational generality [1] and leakage-

resilient primitives that prioritize input exposure [7]. Most of the previous methods largely assume that the role is a social

one, and that leakage is an undesirable by-product of communication. Equally, functional encryption schemes and function-

security models, attain strong function privacy, but outside the interactive SMPC context, which restricts their practical use

[20], [30]. On the contrary, FH-SMPC incorporates directly into an SMPC workflow functional hiding without

compromising interactivity and scalability. This integration is the reason why the proposed framework has better leakage

suppression than classical SMPC and is also much more efficient than separate function-hiding cryptographic

constructions.

On theoretical grounds, the results support the need to broaden the conventional definitions of SMPC security by including

a specific mention of the leakage at the function level. A somewhat surprising, but significant finding is that patterns of

uniform executions, in conjunction with the encapsulation of functions, can be disproportionately large privacy gains, as

compared to their size in terms of computation [35-39]. This implies that protocol architecture can be an asset to future

protocol design as cryptographic expertise [40-45].

However, in spite of the strengths, the proposed framework has limitations. Testing is done in controlled conditions on

synthetic workloads, which though required to isolate leakage characteristics, does not necessarily reflect all the dynamics

of distributed deployments on a large scale. Also, the existing implementation is not dealing with side channels at hardware

level or denial-of-service attacks, which are not in the defined threat model. Further potential work might involve the use

of structures of optimized encapsulation and benchmark of real-world applications as well as their integration with adaptive

adversary models.

In a wider context, the work fits the new debate on transparency in algorithms, protection against intellectual property, and

secure computing organizations. FH-SMPC addresses a conceptual difference between cryptographic privacy and system

development by seeing functions as confidential objects. By so doing, it helps on a developing trend of holistic privacy

forms that safeguard what is computed and not the source of data.

6. Conclusion and Future Scope

This paper dealt with a frequently ignored but progressively important problem in secure multiparty computation the danger

of information leakage due to disclosure of computation logic. Although the conventional SMPC models offer good

assurances on the confidentiality of inputs, they predominantly rely on the fact that the task under assessment is non-

sensitive and publicly available. In the context of formal analysis and empirical assessment, this paper has shown that this

assumption may result into non-trivial leakage, especially in an environment where computation logic codes proprietary

strategies, decision policies, or sensitive analytical models. The paper has filled this gap by proposing the Function-Hiding

Secure Multiparty Computation (FH-SMPC) framework which incorporates encapsulation of functions and homogenous

execution patterns into the workflow of SMPC. The offered solution maintains accuracy and scalability and ensures a

substantial decrease in transcript-level distinguishability. Theoretical security analysis and long experimental data validated

that FH-SMPC has high-function indistinguishability and no prohibitive computational or communication rates. The use

of quantitative comparisons to prove the results, statistical validation, and studies of ablation confirmed that the observable

improvements can be explained by conscious architectural decisions and not by accidental phenomena. In addition to the

direct contributions, this work shows a more general change in the conceptualization of privacy in collaborative

computation. Guaranteeing the safety of inputs is no longer effective in hostile and competitive world; computation logic

should be a first-class confidential asset. This study preconditions the development of more privacy-preserving computation

models by proving the possibility of effective implementation of the concept of function hiding in the context of SMPC.

Journal of Cyber Security and Risk Auditing Vol.2026, No.1 ISSN: 3079-5354

70

A few recommendations on the way to conduct future research will follow. It would be possible to test the scalability of

the framework to large-scale, heterogeneous network environments and to test its performance with real-world workloads,

which would help in further legitimizing its practicability. Future research on adaptive adversary models, combining

adaptive adversary models with trusted execution environments, or resilience-enhancing hybrids between function hiding

and differential privacy can result in further resilience. Lastly, making the formalization of function-level privacy as a

standard security dimension an SMPC design choice may have an impact on future protocol design and benchmarking. To

conclude, FH-SMPC is a move towards more comprehensive secure computational models - models that can ensure the

integrity of not only data, but also of logic that manipulates it.

Acknowledgements

Not applicable.

Funding

This work was supported by the Deanship of Scientific Research, Vice Presidency for Graduate Studies and Scientific

Research, King Faisal University, Saudi Arabia (Grant No. KFU260480).

Contributions

U.M; V.A; I.K; A.A; R.S; M.O: Conceptualization, Methodology, Software, Writing – Original Draft, Visualization,

Project Administration. U.M: Data Curation, Writing – Review & Editing, Supervision.

Ethics declarations

This article does not contain any studies with human participants or animals performed by any of the authors.

Consent for publication

Not applicable.

Competing interests

The authors have no conflicts of interest to disclose.

References

[1]. S. R. H. Najarkolaei, M. M. Mojahedian, and M. R. Aref, “Beyond Yao’s Millionaires: Secure Multi-Party

Computation of Non-Polynomial Functions,” Oct. 2024, doi: 10.48550/arxiv.2410.17000.

[2]. C. Wang et al., “TSS-ZKP: Enabling Blockchain Account Supervision Without Compromising User Identity,” IEEE

Internet of Things Journal, doi: 10.1109/jiot.2025.3577616.

[3]. M. Kumar and B. Mondal, “Quantum Secure Multiparty Computation based on Secure Summation and QKD,” Jul.

2025, doi: 10.21203/rs.3.rs-6706796/v1.

[4]. S. Tarnopolsky, Zirui, S. Deng, V. Ramkumar, N. Raviv, and A. Cohen, “Individual Confidential Computing of

Polynomials over Non-Uniform Information,” Jan. 2025, doi: 10.48550/arxiv.2501.15645.

[5]. Aslam, W. Tariq, T. Waheed, K. Hamid, S. Rizwan, and A. Ahmed, “Enhancing Privacy and Security in Multi-

Party Computation for Data Mining in Cryptographically Protected Environments,” vol. 3, no. 8, pp. 510–531, Aug.

2025, doi: 10.63075/fxe5gg65.

[6]. X. Liu et al., “HE/MPC-Based Scheme for Secure Computing LCM/GCD and Its Application to Federated

Learning,” Symmetry, vol. 17, no. 7, p. 1151, Jul. 2025, doi: 10.3390/sym17071151.

[7]. C. Hazay, M. Venkitasubramaniam, and M. Weiss, “Protecting Distributed Primitives Against Leakage: Equivocal

Secret Sharing and more,” Journal of Cryptology, vol. 38, no. 1, Oct. 2024, doi: 10.1007/s00145-024-09524-3.

[8]. S. Begum and S. Sultana, “Anonymous data leakage-resilient in multi-receiver hybrid data encryption in public key

system,” vol. 21, no. 3 (1), pp. 1516–1522, Aug. 2025, doi: 10.62643/ijerst.v21.n3(1).pp1516-1522.

[9]. R. R. Cohen, J. Doerner, Y. Kondi, and A. Shelat, “Secure Multiparty Computation with Identifiable Abort via

Vindicating Release,” pp. 36–73, doi: 10.1007/978-3-031-68397-8_2.

[10]. Q. Deng, L. Chen, and Y. Mu, “Leakage Reduced Searchable Symmetric Encryption for Multi-keyword Queries,”

IEEE Transactions on Cloud Computing, doi: 10.1109/tcc.2025.3573378.

Journal of Cyber Security and Risk Auditing Vol.2026, No.1 ISSN: 3079-5354

71

[11]. H. Chen, J. Li, and L. F. Zhang, “A Multi-Server Publicly Verifiable Computation Scheme with Context-Hiding

Property,” pp. 1860–1865, Jul. 2024, doi: 10.1109/isit57864.2024.10619256.

[12]. Q. Gao, D. Lu, D. Wen, S. Renqian, and X. Wei, “Multi-party verifiable arbitrated quantum signature scheme with

information hiding function,” Laser Physics Letters, vol. 22, no. 8, p. 085202, Jul. 2025, doi: 10.1088/1612-

202x/adf395.

[13]. S. K. Dixit, A. Ramamoorthy, and K. Anusha, “Neural Cryptographic Protocols Using Secure Multi-Party

Computation (SMPC) for Encrypted Data Processing in AI-Driven Security System,” pp. 519–549, Mar. 2025, doi:

10.71443/9789349552029-17.

[14]. M. Thomas, L. Choudhary, Analysis of cloud security and performance for leakage of critical information using

DROPS methodology, International Research Journal of Engineering and Technology (IRJET), vol. 7, no. 2, pp.

103–105, Feb. 2020. [Online]. Available: www.irjet.net

[15]. G. Zhao, W. Tan, and C. Peng, “An Attribute-Based Proxy Re-Encryption Scheme Supporting Revocable Access

Control,” Electronics, vol. 14, no. 15, p. 2988, Jul. 2025, doi: 10.3390/electronics14152988.

[16]. Q. Ye and B. Delaware, “Taypsi: Static Enforcement of Privacy Policies for Policy-Agnostic Oblivious

Computation,” Proceedings of the ACM on programming languages, vol. 8, no. OOPSLA1, pp. 1407–1436, Apr.

2024, doi: 10.1145/3649861.

[17]. N. K. Rathi, “Beyond Encryption: A Holistic Approach to Privacy-Preserving Query Processing in Modern

Database Systems,” Indian Scientific Journal Of Research In Engineering And Management, vol. 09, no. 06, pp. 1–

9, Jun. 2025, doi: 10.55041/ijsrem49974.

[18]. A. Syed, “AI-powered genomic risk prediction and personalized drug recommendations using transformers,” in

Transformative Role of Transformer Models in Healthcare, © 2026, pp. 32, doi: 10.4018/979-8-3373-2038-0.ch010.

[19]. M. Xu et al., “Sectric: Towards Accurate, Privacy-Preserving and Efficient Triangle Counting,” Proceedings of The

Vldb Endowment, vol. 18, no. 10, pp. 3382–3395, Jun. 2025, doi: 10.14778/3748191.3748202.

[20]. Y. Li, J. Wei, F. Guo, Y. Xiang, and X. Chen, “Function-Hiding Multi-Client Inner-Product Functional Encryption

Without Pairings for Large Space,” IEEE Transactions on Dependable and Secure Computing, doi:

10.1109/tdsc.2025.3576164.

[21]. H. Choi, “PP-STAT: An Efficient Privacy-Preserving Statistical Analysis Framework using Homomorphic

Encryption,” Aug. 2025, doi: 10.1145/3746252.3761194.

[22]. V. R. Cadambe, H. Jeong, and F. P. Calmon, “Differentially Private Secure Multiplication: Hiding Information in

the Rubble of Noise,” pp. 2207–2212, Jun. 2023, doi: 10.1109/isit54713.2023.10206949.

[23]. B. Han et al., “PBFL: A Privacy-Preserving Blockchain-Based Federated Learning Framework With Homomorphic

Encryption and Single Masking,” IEEE Internet of Things Journal, p. 1, Jan. 2025, doi: 10.1109/jiot.2024.3524632.

[24]. Y. Chen, N. Ding, D. Gu, and Y. Bian, “Practical multi-party private set intersection cardinality and intersection-

sum protocols under arbitrary collusion1,” Journal of Computer Security, Apr. 2024, doi: 10.3233/jcs-230091.

[25]. M. Vijaya and L. S. Chakravarthy, “SECUREDGE: Privacy-Preserving Deduplication with Homomorphic

Encryption for Multi-Tenant Cloud Systems,” International Journal of Basic and Applied Sciences, vol. 14, no. 3,

pp. 242–257, Jul. 2025, doi: 10.14419/6ekp0r85.

[26]. J. Zhang et al., “A Secure and Lightweight Multi-Party Private Intersection-Sum Scheme over a Symmetric

Cryptosystem,” Symmetry, vol. 15, no. 2, p. 319, Jan. 2023, doi: 10.3390/sym15020319.

[27]. F. Falzon and E. A. Markatou, “Re-visiting Authorized Private Set Intersection: A New Privacy-Preserving Variant

and Two Protocols,” IACR Cryptology ePrint Archive, vol. 2024, p. 1579, Jan. 2025, doi: 10.56553/popets-2025-

0041.

[28]. Y. Luo, Y. Chen, T. Li, C. J. Tan, and H. Dou, “Cloud-SMPC: two-round multilinear maps secure multiparty

computation based on LWE assumption,” Jan. 2024, doi: 10.1186/s13677-023-00586-5.

[29]. H. Xia and M. Wang, “Efficient and Compact Full-Domain Functional Bootstrapping via Subring Folding,” IACR

transactions on cryptographic hardware and embedded systems, vol. 2025, no. 4, pp. 737–762, Sep. 2025, doi:

10.46586/tches.v2025.i4.737-762.

[30]. Y. Bai, X. Guang, and R. W. Yeung, “Secure Network Function Computation: Function-Security,” pp. 1514–1519,

Jul. 2024, doi: 10.1109/isit57864.2024.10619365.

[31]. X. Kang et al., “Privacy Set Intersection From Oblivious Polynomial Evaluation,” Zhongguo kexue, Aug. 2025,

doi: 10.1360/ssi-2025-0184.

Journal of Cyber Security and Risk Auditing Vol.2026, No.1 ISSN: 3079-5354

72

[32]. S. Saeidian, G. Cervia, T. J. Oechtering, and M. Skoglund, “Rethinking Disclosure Prevention with Pointwise

Maximal Leakage,” The journal of privacy and confidentiality, vol. 15, no. 1, Mar. 2025, doi: 10.29012/jpc.893.

[33]. Sweet, D. Darais, D. Heath, W. R. Harris, R. Estes, and M. Hicks, “Symphony: Expressive Secure Multiparty

Computation with Coordination,” The art, science, and engineering of programming, vol. 7, no. 3, Feb. 2023, doi:

10.22152/programming-journal.org/2023/7/14.

[34]. H. S. Jaafar, A. A. Abed, and M. A. Al-Shareeda, “A Secure Industrial Internet of Things (IIoT) Framework for

Real-Time PI Control and Cloud-Integrated Industrial Monitoring,” STAP Journal of Security Risk Management,

vol. 2026, no. 1, pp. 77–86, 2026, doi: 10.63180/jsrm.thestap.2026.1.5.

[35]. Alsahaim S, Almaiah MA, Sulaiman RB. Security Threats in Mobile Phones: Challenges, Countermeasures, and

the Importance of User Awareness. International Journal of Cybersecurity Engineering and Innovation. 2023 Nov

25;2023(1).

[36]. K. Audah Kareem and M. A. Al-Shareeda, “A Low-Complexity Li-Fi Communication Framework for Short-Range

Text Transmission,” Jordanian Journal of Informatics and Computing, vol. 2026, no. 1, pp. 15–24, 2026, doi:

10.63180/jjic.thestap.2026.1.2.

[37]. H. S. Jaafar, A. A. Abed, and M. A. Al-Shareeda, “A Secure Industrial Internet of Things (IIoT) Framework for

Real-Time PI Control and Cloud-Integrated Industrial Monitoring,” STAP Journal of Security Risk Management,

vol. 2026, no. 1, pp. 77–86, 2026, doi: 10.63180/jsrm.thestap.2026.1.5.

[38]. Alghareeb MS, Almaiah M, Badr Y. Cyber Security Threats in Wireless LAN: A Literature Review. International

Journal of Cybersecurity Engineering and Innovation. 2024 Dec 31;2024(1).

[39]. S. R. Addula, S. Norozpour, and M. Amin, “Risk Assessment for Identifying Threats, vulnerabilities and

countermeasures in Cloud Computing,” Jordanian Journal of Informatics and Computing, vol. 2025, no. 1, pp. 38–

48, 2025, doi: 10.63180/jjic.thestap.2025.1.5.

[40]. Alrajeh M, Almaiah M, Mamodiya U. Cyber Risk Analysis and Security Practices in Industrial Manufacturing:

Empirical Evidence and Literature Insights. International Journal of Cybersecurity Engineering and Innovation.

2026 Jan 7;2026(1).

[41]. B. Konda, A. R. Yadulla, V. K. Kasula, M. Yenugula, and S. B. Rakki, “A Quantum-Resistant Privacy-Preserving

Framework for Consortium Blockchains Using Blind Signatures, Hierarchical Fully Homomorphic Encryption, and

Zero-Knowledge Proofs,” pp. 1–6, Feb. 2025, doi: 10.1109/satc65530.2025.11137073.

[42]. Bay, “Delegated multi-party private set intersections from extendable output functions,” PeerJ, vol. 11, p. e3141,

Aug. 2025, doi: 10.7717/peerj-cs.3141.

[43]. Yassin A, Almaiah M. Cyber security risk assessment for determining threats and countermeasures for banking

systems. International Journal of Cybersecurity Engineering and Innovation. 2026 Jan 9;2026(1).

[44]. Gruner, C.-A. Brust, and A. Zeller, “Finding Information Leaks with Information Flow Fuzzing - RCR Report,”

ACM Transactions on Software Engineering and Methodology, Jan. 2025, doi: 10.1145/3711905.

